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SOLUTIONS TO CHAPTER 1
PROBLEMS

1.1 (a)

n∑
i=1

(yi − ȳ) =
n∑
i=1

yi − ȳ
(

n∑
i=1

1

)
=

n∑
i=1

yi −
1

n

(
n∑
i=1

yi

)
(n) =

n∑
i=1

yi −
n∑
i=1

yi = 0

(b) The mean of the transformed data set is

ū =
1

n

n∑
i=1

(a+ byi) =
1

n

(
na+ b

n∑
i=1

yi

)
= a+ bȳ

and the median of the transformed data set is

m̂u = a+ bm̂

(c) There is no general result for the sample mean but if all yi ≥ 0 and n is an odd
number then the new median is (m̂)2.

(d) The mean of the augmented data set is

ȳa (y0) =
1

n+ 1

(
y0 +

n∑
i=1

yi

)
=
nȳ + y0

n+ 1

which depends on y0. Since

lim
y0→∞

nȳ + y0

n+ 1
=∞

and
lim

y0→−∞
nȳ + y0

n+ 1
= −∞

this means that an additional very large positive observation or very large neg-
ative observation has a large effect on the sample mean.

(e) Case 1: If n is odd then the median of the original data set is

m̂ = m̂ (y1, y2, . . . , yn) = y(n+12 )

1
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The augmented data set will have an even number of observations.

If y0 ≥ y(n+12 +1) then the median of the augmented data set is

m̂a =
1

2

[
y(n+12 ) + y(n+12 +1)

]
which does not depend on the value of y0. If y(n+12 ) and y(n+12 +1) are close in
value then the median will change by very little.

If y0 ≤ y(n+12 −1) then the the median of the augmented data set is

m̂a =
1

2

[
y(n+12 −1) + y(n+12 )

]
which does not depend on the value of y0. If y(n+12 −1) and y(n+12 ) are close in
value then the median will change by very little.

If y(n+12 −1) < y0 < y(n+12 +1) then the median of the augmented data set is

m̂a =
1

2

[
y0 + y(n+12 )

]
which does depend on the value of y0. If y0 and y(n+12 ) are close in value then
the median will change by very little.

Case 2: If n is even then median of the original data set is

m̂ = m̂ (y1, y2, . . . , yn) =
1

2

[
y(n2 ) + y(n2+1)

]
The augmented data set will have an odd number of observations.

If y0 ≥ y(n2+1) then the median of the augmented data set is

m̂a = y(n2+1)

which does not depend on the value of y0. If y(n2 ) and y(n2+1) are close in value
then the median will change by very little.

If y0 ≤ y(n2 ) then the median of the augmented data set is

m̂a = y(n2 )

which does not depend on the value of y0. If y(n2 ) and y(n2+1) are close in value
then the median will change by very little.

If y(n2 ) < y0 < y(n2+1) then the median of the augmented data set is

m̂a = y0

which does depend on the value of y0. If y(n2 ) and y(n2+1) are close in value then
the median will change by very little.
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(f) Unlike the sample mean, the sample median is not affected by outliers (very large
positive y0 or very large negative y0) so it is a more robust numerical summary
of location. For example, in many countries there are usually a few people with
very large incomes. The mean income is affected by these few very large incomes
so reporting the mean income rather than the median income would give the false
impression that people are doing well in general with respect to income.

(g)
d

dµ
V (µ) = −2

n∑
i=1

(yi − µ) = −2n (ȳ − µ) = 0 if µ = ȳ

and by the First Derivative Test, V (µ) is minimized at µ = ȳ.

1.2 (a)

Syy =
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ȳ) (yi − ȳ) =
n∑
i=1

yi (yi − ȳ)− ȳ
n∑
i=1

(yi − ȳ)

=
n∑
i=1

yi (yi − ȳ)− 0 since
n∑
i=1

(yi − ȳ) = 0

=
n∑
i=1

yi (yi − ȳ) =
n∑
i=1

y2
i − ȳ

n∑
i=1

yi =
n∑
i=1

y2
i −

(
1

n

n∑
i=1

yi

)
n∑
i=1

yi

=
n∑
i=1

y2
i −

1

n

(
n∑
i=1

yi

)2

=
n∑
i=1

y2
i − n (ȳ)2 (1.1)

(b) Let s2
u be the sample variance of the transformed data set {u1, u2, . . . , un}. Then

s2
u =

1

n− 1

n∑
i=1

(ui − ū)2 =
1

n− 1

n∑
i=1

[a+ byi − (a+ bȳ)]2

=
1

n− 1

n∑
i=1

(byi − bȳ)2 =
b2

n− 1

n∑
i=1

(yi − ȳ)2

= b2s2

The sample standard deviation of the transformed data set is

su = |b| s

The IQR of the transformed data set is

IQR (u1, u2, . . . , un) = |b| IQR (y1, y2, . . . , yn)

The range of the transformed data set is

range (u1, u2, . . . , un) = |b|
(
y(n) − y(1)

)
Note that |b| is necessary since b can be a negative number and all the summaries
of variability are positive.
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(c) We first note that if we rearrange

s2 =
1

n− 1

[
n∑
i=1

y2
i − n (ȳ)2

]
we obtain

n∑
i=1

y2
i = (n− 1) s2 + n (ȳ)2 (1.2)

Therefore the sample variance of the augmented data set {y0, y1, y2, . . . , yn} is
given by

s2
a (y0) =

1

n

{
n∑
i=0

y2
i − (n+ 1) [ȳa (y0)]2

}
using (1.1)

=
1

n

[
n∑
i=1

y2
i + y2

0 − (n+ 1)
(nȳ + y0)2

(n+ 1)2

]
since ȳa (y0) =

nȳ + y0

n+ 1

=
1

n

n∑
i=1

y2
i +

y2
0

n
− n2 (ȳ)2 + 2nȳy0 + y2

0

n (n+ 1)

=
1

n

n∑
i=1

y2
i +

(n+ 1) y2
0 − n2 (ȳ)2 − 2nȳy0 − y2

0

n (n+ 1)

=
1

n

[
(n− 1) s2 + n (ȳ)2

]
+
ny2

0 − n2 (ȳ)2 − 2nȳy0

n (n+ 1)
using (1.2)

=
(n− 1) s2

n
+ (ȳ)2 +

y2
0 − n (ȳ)2 − 2ȳy0

(n+ 1)

=
(n− 1) s2

n
+

(n+ 1) (ȳ)2 − n (ȳ)2

(n+ 1)
+
y2

0 − 2ȳy0

(n+ 1)

=
(n− 1) s2

n
+

(ȳ)2

(n+ 1)
+
y0 (y0 − 2ȳ)

(n+ 1)

Therefore

lim
y0→±∞

sa (y0) = lim
y0→±∞

[
(n− 1) s2

n
+

(ȳ)2

(n+ 1)
+
y0 (y0 − 2ȳ)

(n+ 1)

]1/2

=

[
(n− 1) s2

n
+

(ȳ)2

(n+ 1)
+

1

(n+ 1)
lim

y0→±∞
y0 (y0 − 2ȳ)

]1/2

= ∞

This means that an additional very large positive observation or very large nega-
tive observation has a large effect on the sample standard deviation. The sample
standard deviation is not a robust measure of variability.

(d) Suppose the size of the data set n is reasonably large. Using an argument
similar to the argument given in Problem 1 (e) for the median, it can be shown
that y0 has a small effect on the IQR of the augmented data set. In particular,
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if y0 ≥ q(0.75) or y0 ≤ q(0.25), then y0 has a small effect on the IQR of the
augmented data set. Therefore as |y0| increases there will be little effect on the
IQR of the augmented data set. The IQR is not affected by outliers and is a
robust measure of variability.

(e) If y(1) ≤ y0 ≤ y(n) then the range of the augmented data set is the same as the
original data set.

If y0 ≤ y(1) then the range of the augmented data set is y(n) − y0.

If y0 ≥ y(n) then the range of the augmented data set is y0 − y(1).

In both cases the range increases as |y0| increases. The range is not a robust
measure of variability.

1.3 Since

1
n

n∑
i=1

(ui − ū)3

[
1
n

n∑
i=1

(ui − ū)2

]3/2
=

1
n

n∑
i=1

(byi − bȳ)3

[
1
n

n∑
i=1

(byi − bȳ)2

]3/2

=
b3

(b2)3/2

1
n

n∑
i=1

(yi − ȳ)3

[
1
n

n∑
i=1

(yi − ȳ)2

]3/2

=

[
b

|b|

]3

g1

Therefore g1 (u1, u2, . . . , un) = g1 if b > 0 and g1 (u1, u2, . . . , un) = −g1 if b < 0. In
summary the magnitude of the sample skewness remains unchanged but the sample
skewness changes sign if b < 0.

Since

1
n

n∑
i=1

(ui − ū)4[
1
n

n∑
i=1

(ui − ū)2

]2 =

1
n

n∑
i=1

(byi − bȳ)4

[
1
n

n∑
i=1

(byi − bȳ)2

]2

=
b4

(b2)2

1
n

n∑
i=1

(yi − ȳ)4

[
1
n

n∑
i=1

(yi − ȳ)2

]2 = g2

therefore the sample kurtosis is the same for both data sets.

1.4 For the revenues:
sample mean = (−7) (2500) + 1000 = −16500

sample standard deviation = |−7| (5500) = 38500
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sample median = (−7)(2600) + 1000 = −17200

sample skewness = (−1) (1.2) = −1.2

sample kurtosis = 3.9

range = (7) (7500) = 52500

1.5 (a) The relative frequency histogram of the piston diameters is given in Figure 1.1.
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Figure 1.1: Histogram of Piston Diameters

(b) ȳ = 100.7/50 = 2.014, m̂ = q (0.5) = 1
2

(
y(25) + y(26)

)
= 1

2 (2.1 + 2.5) = 2.3

(c) s2 = 1
49

[
1110.79− 50 (2.014)2

]
= 18.5302, s = 4.3047

q (0.25) = 1
2

(
y(12) + y(13)

)
= 1

2 [−0.7 + (−0.6)] = −0.65

q (0.75) = 1
2

(
y(38) + y(39)

)
= 1

2 [5.1 + 5.4] = 5.25

IQR = 5.25− (−0.65) = 5.9

(d) The five number summary is: −12.8, −0.65, 2.3, 5.25, 8.9

(e) Ppk = 0.6184

(f) If ȳ ≈ ±10 then Ppk ≈ 0. Values of ȳ less than −10 or bigger than +10

indicate that performance is poor. If ȳ ≈ 0 then Ppk ≈ 10/3s. Recall that
for Normal data we would expect approximately 99% of the observed data to
lie between µ − 3σ ≈ ȳ − 3s and µ + 3σ ≈ ȳ + 3s. Therefore if ȳ ≈ 0 and
3s ≈ 10 or 10/3s ≈ 1 then this indicates that performance is good. Therefore
Ppk ≈ 10/3s = 1 indicates good performance.

(g) Let Y ∼ G (2.014, 4.3047) then

P (diameters out of specification) = 1− P (−10 < Y < 10)

= 0.03408 using the N (0, 1) table

= 0.034412 using R
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1.7 The data from smallest to largest are:
1.1 3.9 4.3 4.5 5.2 6.3 7.2 7.6 8.5 14.0

q (0.25) =
1

2

(
y(2) + y(3)

)
=

1

2
(3.9 + 4.3) = 4.1

q (0.5) =
1

2

(
y(5) + y(6)

)
=

1

2
(5.2 + 6.3) = 5.75

q (0.75) =
1

2

(
y(8) + y(9)

)
=

1

2
(7.6 + 8.5) = 8.05

IQR = q (0.75)− q (0.25) = 8.05− 4.1 = 3.95

q (0.25)− 1.5× IQR = 4.1− 1.5 (3.95) = −1.825

q (0.75) + 1.5× IQR = 8.05 + 1.5 (3.95) = 13.975

The top of the box is at 8.05, the bottom is at 4.1 and the line inside the box is at
5.75. The upper whisker is at 8.5 and the lower whisker is at 1.1. There is one outlier
at 14.0.

The empirical cumulative distribution function is a step function which jumps a height
of 0.1 at each of the points: 1.1 3.9 4.3 4.5 5.2 6.3 7.2 7.6 8.5 14.0

1.8 (a)
y(1) q (0.25) q (0.5) q (0.75) y(n) IQR range

Dataset 1 0.1 1.3 2.8 5.5 13.6 4.2 13.5

Dataset 2 0.2 2.1 4.8 6.7 9.5 4.6 9.3

(b) Since Dataset 2 has more jumps of a smaller size than Dataset 1, therefore
Dataset 2 has more observations.

(c) From the shapes of the empirical cumulative distribution functions we can see
that the relative frequency histogram of Dataset 1 would not be symmetric but
would have a long right tail and the relative frequency histogram of Dataset 2
would be reasonably symmetric.

(d) Based on (c), the sample skewness for Dataset 1 would be positive and the sample
skewness for Dataset 2 would be close to zero.

(e) Seventy-five percent of the observations for Dataset 1 are in the interval [0.1, 5.5]

while 75 percent of the observations for Dataset 2 are in the interval [0.2, 6.7]

These intervals are reasonably similar in width. Dataset 1 which has a long right
tail has 25 percent of its observations in the interval [5.5, 13.6] while Dataset 2 has
25 percent of its observations in the interval [6.7, 9.5] which is a much narrower
interval. This information indicates that Dataset 1 will have a larger sample
standard deviation than Dataset 2.

Alternately we could note that the shape of the empirical cumulative distribution
function for Dataset 1 is similar to the shape of the cumulative distribution
function of an Exponential(θ) random variable which has standard deviation θ.
The median of an Exponential(θ) random variable is m = θ log (2) which can be
rearranged as θ = m/ log (2). Since the sample median for Dataset 1 is m̂ = 2.8
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then an estimate of the standard deviation θ would be 2.8/ log (2) = 4.04.

The shape of the empirical cumulative distribution function for Dataset 2 is
similar to the shape of the cumulative distribution function of a Uniform(a, b)

random variable which has standard deviation
√

(b− a)2 /12. Since the range for
Dataset 2 is 9.3 then an estimate of the sample standard deviation for these data

would be
√

(9.3)2 /12 = 2.7 which also indicates the sample standard deviation
of Dataset 1 would be larger than the sample standard deviation of Dataset 2.

(f) F̂1 (9) is approximately equal to 0.83 and F̂2 (3) is approximately equal to 0.35.

1.9 (a)

y(1) q (0.25) q (0.5) q (0.75) y(n) IQR range
Dataset 1 0.0 1.4 3.0 4.5 6.0 3.1 6.0

Dataset 2 0.7 2.1 2.9 3.7 5.8 1.6 5.1

Dataset 3 0.0 0.3 0.8 1.4 5.9 1.1 5.9

(b) From the shapes of the boxplots we can see that the relative frequency his-
tograms of Dataset 1 and Datatset 2 would both be reasonably symmetric, and
the relative frequency histogram of Dataset 3 would not be symmetric but would
have a long right tail.

(c) Based on (b), the sample skewness for Dataset 1 and Dataset 2 would be close
to zero and the sample skewness for Dataset 3 would be positive.

(d) The shape of the boxplot for Dataset 3 indicates that its relative frequency his-
togram would not be symmetric but would have a long right tail. Therefore the
relative frequency histogram of Dataset 3 would not be bell-shaped or uniform.
The sample skewness for these data would be positive.

For Dataset 1 the center line in the box, which corresponds to the sample median,
divides both the box and the whiskers approximately in half which indicates that
the relative frequency histogram would be reasonably symmetric. The shape of
the boxplot for Dataset 1 also indicates that approximately 25 percent of the
observations lie in 4 intervals of approximately equal width which would suggest
that the shape of the relative frequency histogram would be reasonably uniform.

For Dataset 2 the center line in the box, which corresponds to the sample median,
divides both the box and the whiskers approximately in half which indicates that
the relative frequency histogram would be reasonably symmetric. The distance
from the sample median to the whiskers is approximately 2.5 times the distance
from the sample median to the edge of the box which indicates that the relative
frequency histogram for Dataset 2 would be reasonably bell-shaped.

Therefore the relative frequency histogram for Dataset 2 would look most bell-
shaped while the relative frequency histogram for Dataset 1 would look more
uniform.

(e) The sample kurtosis of Dataset 1 would be less than 3 because the distribution
of the dataset is reasonably uniform.
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(f) The sample kurtosis of Dataset 2 would be approximately equal to 3 because the
distribution of the dataset is reasonably bell-shaped.

(g) For a data set which is reasonably symmetric, the sample median and sample
mean will be approximately equal. Therefore we can compare the variability
in Dataset 1 and Dataset 2 by looking at the distribution of the points about
the median. Since the width of the box and the distance between whiskers
for Dataset 1 are larger than for Dataset 2, the sample standard deviation for
Dataset 1 will be larger than the sample deviation for Dataset 2.

Alternately, the shape of the boxplot for Dataset 1 suggested a Uniform distribu-
tion. Since the range for Dataset 1 is 6.0 then an estimate of the sample standard

deviation would be
√

(6)2 /12 ≈ 1.7. The shape of the boxplot for Dataset 2
suggested a bell-shaped or Gaussian distribution. For Gaussian data we expect
the IQR to be approximately equal to 1.35σ. Since the IQR for Dataset 2 is 1.6

then an estimate of the standard deviation would be 1.6/1.35 ≈ 1.2 and there-
fore the sample standard deviation for Dataset 1 will be larger than the sample
deviation for Dataset 2.

1.11 (a)
Sex y(1) q (0.25) q (0.5) q (0.75) IQR range

Female 71.00 85.75 89.75 93.12 7.37 31.5

Male 78.00 87.50 92.00 96.00 8.5 27.00

Sex ȳ s g1 g2

Female 89.24 6.548 −0.444 3.730

Male 92.06 6.696 −0.088 2.434

(b) The relative frequency histograms are given in Figures 1.2 and 1.3.
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Figure 1.2: Relative Frequency Histogram for Lengths of Female Coyotes
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Figure 1.3: Relative Frequency Histogram for Lengths of Male Coyotes

(c) The dataset for female lengths consists of 40 observations. The sample mean
and sample median are close in value, the sample skewness is negative but close
to zero, and the sample kurtosis is slightly larger than 3. The IQR is equal to
7.37 which is reasonably close to 1.35s = 1.35 (6.548) = 8.84. These results are
what we would expect for a Gaussian data set of this reasonably small sample
size. In Figure 1.2 the superimposed Gaussian probability density function fits
the data reasonably well for a data set of size 40. Based on the comparisons of
the observed and expected summaries and the fact that this is a reasonably small
data set, we would conclude that the Gaussian model fits these data reasonably
well.

The dataset for male lengths consists of 43 observations. The sample mean and
sample median are close in value, the sample skewness is negative but very close
to zero, and the sample kurtosis is slightly smaller than 3. The IQR is equal to
8.5 which is reasonably close to 1.35s = 1.35 (6.696) = 9.04. These results are
what we would expect for a Gaussian data set of this reasonably small sample
size. In Figure 1.3 the superimposed Gaussian probability density function fits
the data reasonably well for a data set of size 43. Based on the comparisons of
the observed and expected summaries and the fact that this is a reasonably small
data set, we would conclude that the Gaussian model fits these data reasonably
well.

(d) The boxplots are shown in Figure 1.4.The shape of each boxplot suggests that
the distribution of the corresponding data set is reasonably symmetric and simi-
lar to a boxplot that we would see for Gaussian data. For the data set of female
lengths we notice two outliers, that is, observations which are much smaller than
the other observations in the data set. The data set for male lengths has no
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Figure 1.4: Boxplots for lengths of female and male coyotes

outliers. The center of the box for male lengths is taller than the center of the
box for female lengths which is consist with the sample median for male lengths
being larger than the sample median for female lengths. In general the boxplots
look similar in shape with the boxplots for males being shifted up which is con-
sistent with male coyotes generally being larger than female coyotes.

(e) We note that the empirical cumulative distribution function for the male coyotes
is to the right of the empirical cumulative distribution function for the female
coyotes which would indicate that male lengths of coyotes are generally larger
than females as you might expect. We also notice that the shapes of both
empirical cumulative distribution functions are similar in shape and the shape
is similar to what we would see for Gaussian data.

1.12 The identity

Sxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

xi (xi − x̄) =
n∑
i=1

x2
i −

1

n

(
n∑
i=1

xi

)2

follows from Problem 2(a) by replacing the yi’s with the xi’s.

Sxy =
n∑
i=1

(xi − x̄) (yi − ȳ) =
n∑
i=1

xi (yi − ȳ)− x̄
n∑
i=1

(yi − ȳ) =
n∑
i=1

xi (yi − ȳ)− 0

=
n∑
i=1

xi (yi − ȳ)

Sxy =
n∑
i=1

(xi − x̄) (yi − ȳ) =
n∑
i=1

(xi − x̄) yi − ȳ
n∑
i=1

(xi − x̄) =
n∑
i=1

(xi − x̄) yi − 0

=
n∑
i=1

(xi − x̄) yi
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Figure 1.5: Empirical c.d.f.’s for lengths of female and male coyotes

1.13 (a) The two variates are Value (x) and Gross (y), where Value is the average amount
the actor’s movies have made (in millions of U.S. dollars), and Gross is the
amount of the highest grossing movie in which the actor played as a major
character (in millions of U.S. dollars). Since the goal is to study the effect of
an actor’s value (x) on the amount grossed in a movie (y), we choose x as the
explanatory variate and y as the response variate.

(b) A scatterplot of the data is given in Figure 1.6.
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Figure 1.6: Scatterplot of gross versus value



13

(c) The sample correlation is

r =
Sxy√
SxxSyy

=
184540.93− 1

20(860.6)(3759.5)[
43315.04− 1

20 (860.6)2
]1/2 [

971560.19− 1
20 (3759.5)2

]1/2

= 0.558

There is a moderately strong positive linear relationship between x and y.

(d) In this example we do not have enough evidence to conclude that a causal rela-
tionship exists. Another plausible explanation for the observed data is that there
is a third variate such as “the talent of the actor” that affects both the Value
(x) and Gross(y) (of course it is very diffi cult to measure the variate “talent”).
Consequently, x and y are expected to be positively correlated, and this is what
we observe in this data set.

1.14 (a) The sample correlations between location 1 with locations 2, 3, 4, 5 are all greater
than 0.95 whereas the sample correlations between location 1 and locations
6, 7, 8, 9 are smaller in value. You would expect the thicknesses at locations
which are adjacent to be more highly correlated.
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Figure 1.7: Scatterplots of wafer thicknesses for locations 1-5
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(b) The variability in the points for locations 1-5 is smaller than for locations 6-9.
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Figure 1.8: Scatterplot of wafer thicknesses for locations 1, 6-9

1.15 (a) The two-way table is:

Cold No Cold Total
Vitamin C 20 80 100

Placebo 30 70 100

Total 50 150 200

(b) The relative risk of a cold in the vitamin C group as compared to the placebo
group is

20/ (20 + 80)

30/ (30 + 70)
=

2

3

(c) The group taking Vitamin C are only two-thirds as likely to catch a cold as
compared to the placebo group which might suggest that taking Vitamin C is
associated with fewer colds. (More on this in Chapter 7.)
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1.16 (a) For a Binomial model the assumptions are a sequence of independent trials, two
outcomes on each trial (S = Success, F = Failure), and P (S) = θ is the same
on each trial.
In this context the trials are people and the two possible outcomes are the
person has the blood type A (Success) and the person does not have blood type
A (Failure).
The assumption of independent trials may not be a valid. For example, if the
population of people consists of families who are highly related then the people
would not be independent with respect to the event of interest.
The people would be chosen without replacement from the population in which
case the trials would not be independent. However if the sample drawn at random
from a large population is small then the trials would be very close to being
independent. (Recall the Binomial approximation to the Hypergeometric.)

(b) Since Y ∼ Binomial(n, θ), the probability function for the random variable Y =

the number of people with blood type A is given by

P (Y = y) =

(
n

y

)
θy (1− θ)n−y for y = 0, 1, . . . , n, 0 ≤ θ ≤ 1

The mean of Y is E (Y ) = nθ and the variance of Y is V ar (Y ) = nθ (1− θ).

(c)

P (Y = 20) =

(
50

20

)
θ20 (1− θ)30 for 0 ≤ θ ≤ 1

(d) A reasonable estimate of θ is given by the proportion of observed successes in
n = 50 trials which is 20/50 = 0.4. An estimate of the probability that in a
sample of n = 10 there will be at least one person with blood type A is given by

1−
(

10

0

)
(0.4)0 (0.6)10 = 1− (0.6)10

= 0.9940

(e) If y successes are observed in n Bernoulli trials then a reasonable estimate of θ
is given by the (sample) proportion of successes, that is, a reasonable estimate
of θ is y/n.

(f)

E

(
Y

n

)
=

1

n
E (Y ) =

1

n
(nθ) = θ

V ar

(
Y

n

)
=

(
1

n

)2

V ar (Y ) =

(
1

n

)2

[nθ (1− θ)] =
θ (1− θ)

n
→ 0 as n→∞
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For large values of n, Y/n should be close to θ. By the Central Limit Theorem

P

(
Y

n
− 1.96

√
θ (1− θ)

n
≤ θ ≤ Y

n
+ 1.96

√
θ (1− θ)

n

)

= P

∣∣∣∣∣∣
Y
n − θ√
θ(1−θ)
n

∣∣∣∣∣∣ ≤ 1.96

 ≈ P (|Z| ≤ 1.96) where Z ∼ N (0, 1)

= 2P (Z ≤ 1.96)− 1 = 2 (0.975)− 1 = 0.95

(g) Since there are now four possible outcomes on each independent trial the joint
distribution of Y1 = no. of A types, Y2 = no. of B types, Y3 = no. of AB types,
Y4 = no. of O types is given by the Multinomial distribution.

P (Y1 = y1, Y2 = y2, Y3 = y3, Y4 = y4) =
n!

y1!y2!y3!y4!
θy11 θ

y2
2 θ

y3
3 θ

y4
4

for yi = 0, 1, . . . , n; i = 1, 2, 3, 4
4∑
i=1

yi = n

and 0 < θi < 1; i = 1, 2, 3, 4
4∑
i=1

θi = 1

(h) Since we observe outcome A, y1 times in a sample of n people a reasonable
estimate of θ1 = proportion of type A in the large population is given by the
sample proportion y1/n. Similarly a reasonable estimate of θi is yi/n for i =

2, 3, 4.

1.17 (a) Since Y ∼ Poisson(θ) the probability density function of Y is

f (y) = P (Y = y) =
θye−θ

y!
for y = 0, 1, 2, . . . and θ ≥ 0

for which E (Y ) = θ and V ar (Y ) = θ.

(b) Independence: the number of occurrences in non-overlapping intervals are in-
dependent. This assumption seems reasonable since there is no obvious way in
which the number of website visits in one time interval would affect the number
of calls in another interval.
Individuality: for suffi ciently short time periods of length ∆t, the probability of
2 or more events occurring in the interval is close to zero, that is, events occur
singly not in clusters. A situation in which this assumption might not be rea-
sonable is if the website was selling tickets to a concert for a popular singer and
you were looking at the number of visits in the first few minutes of the tickets
going on sale. Visits to the website may then occur in clusters due to the high
demand.
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Homogeneity or Uniformity: events occur at a uniform or homogeneous rate θ
over time so that the probability of one occurrence in an interval (t, t+ ∆t) is
approximately θ∆t for small ∆t for any value of t. The homogeneity assumption
may be an issue since the rate of visits may vary with the time of day.

(c)

(i) Let Yi = no. of visits in the i’th second, i = 1, 2, . . . , 10. Then

P (Y1 = 1, Y2 = 4, Y3 = 5, Y4 = 1, Y5 = 0,

Y6 = 2, Y7 = 5, Y8 = 4, Y9 = 3, Y10 = 2)

= P (Y1 = 1)P (Y2 = 4)P (Y3 = 5)P (Y4 = 1)P (Y5 = 0)

P (Y6 = 2)P (Y7 = 5)P (Y8 = 4)P (Y9 = 3)P (Y10 = 2)

=

(
θ1e−θ

1!

)(
θ4e−θ

4!

)(
θ5e−θ

5!

)(
θ1e−θ

1!

)(
θ0e−θ

0!

)
(
θ2e−θ

2!

)(
θ5e−θ

5!

)(
θ4e−θ

4!

)(
θ3e−θ

3!

)(
θ2e−θ

2!

)
=

θ27e−10θ

1!4!5!1!0!2!5!4!3!2!
for θ ≥ 0

(ii) A reasonable estimate of the mean θ is the sample mean ȳ = 27/10 = 2.7.

(iii) An estimate of the probability that there is at least one visit to the website
in a one second interval is

1− (2.7)0 e−2.7

0!
= 1− e−2.7 = 0.9328

(d)

(i)

E
(
Ȳ
)

=
1

n

n∑
i=1

E (Yi) =
1

n

n∑
i=1

θ =
1

n
(nθ) = θ

and V ar
(
Ȳ
)

=

(
1

n

)2 n∑
i=1

V ar (Yi) since Y ′i s are independent r.v.’s

=

(
1

n

)2 n∑
i=1

θ =

(
1

n

)2

(nθ) =
θ

n
→ 0 as n→∞

For large values of n, the sample mean Ȳ should be close to the mean θ.

(ii) By the Central Limit Theorem

P
(
Ȳ − 1.96

√
θ/n ≤ θ ≤ Ȳ + 1.96

√
θ/n

)
= P

(∣∣∣∣∣ Ȳ − θ√
θ/n

∣∣∣∣∣ ≤ 1.96

)
≈ P (|Z| ≤ 1.96) where Z ∼ N (0, 1)

= 2P (Z ≤ 1.96)− 1 = 2 (0.975)− 1 = 0.95
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1.18 (a) Since Y ∼ G (µ, σ) the probability density function of Y is

f (y) =
1√
2πσ

exp

[
− 1

2σ2
(y − µ)2

]
for y ∈ <, µ ∈ <, σ > 0

for which E (Y ) = µ and V ar (Y ) = σ2.

(b) To find the pth quantile of the G (µ, σ) distribution we need to find Q (p) such

that P [Y ≤ Q (p)] = p or equivalently P
(
Z ≤ Q(p)−µ

σ

)
= p. Since the cumula-

tive distribution function of a Gaussian random variable can only be written as
an integral, let Φ−1 be the inverse cumulative distribution function of a G (0, 1)

random variable. Then Q(p)−µ
σ = Φ−1 (p) or Q (p) = µ+ σΦ−1 (p) as required.

By symmetry of the G (0, 1) distribution we know that Φ−1 (0.5) = 0 and there-
fore the median = Q (0.5) = µ+ σ (0) = µ.

The IQR of the G (µ, σ) distribution is equal to

Q (0.75)−Q (0.25) = σ
[
Φ−1 (0.75)− Φ−1 (0.25)

]
= 0.6744898− (−0.6744898)

= 1.34898σ ≈ 1.35σ

(c)

(i) A reasonable estimate of the mean µ is the sample mean

ȳ =
1916

16
= 119.75

(ii) A reasonable estimate of the variance σ2 is the sample variance

s2 =
1

15

[
231618− 16 (119.75)2

]
= 145.13̇

(iii) An estimate of the probability that a randomly chosen UWaterloo Math
student will have an IQ greater than 120 is given by

P (Y ≥ 120) where Y ∼ N
(
119.75, 145.13̇

)
= P

(
Z ≥ 120− 119.75√

145.13̇

)
where Z ∼ N (0, 1)

= P (Z ≥ 0.0208) ≈ P (Z ≥ 0.02) = 1− 0.50798

= 0.49202
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(d)

(i) The distribution of a linear combination of Gaussian (Normal) random vari-
ables has a Gaussian (Normal) distribution. Since

E
(
Ȳ
)

=
1

n

n∑
i=1

E (Yi) =
1

n

n∑
i=1

µ =
1

n
(nµ) = µ

and V ar
(
Ȳ
)

=

(
1

n

)2 n∑
i=1

V ar (Yi) since Y ′i s are independent r.v.’s

=

(
1

n

)2 n∑
i=1

σ2 =

(
1

n

)2 (
nσ2

)
=
σ2

n

therefore Ȳ ∼ G (µ, σ/
√
n).

V ar
(
Ȳ
)

=
σ2

n
→ 0 as n→∞

For large values of n, the sample mean Ȳ should be close to the mean µ.

(ii)

P
(
Ȳ − 1.96σ/

√
n ≤ µ ≤ Ȳ + 1.96σ/

√
n
)

= P
(∣∣Ȳ − µ∣∣ ≤ 1.96σ/

√
n
)

= P (|Z| ≤ 1.96) where Z ∼ G (0, 1)

= 2P (Z ≤ 1.96)− 1

= 2 (0.975)− 1 = 0.95

(iii) We want P
(∣∣Ȳ − µ∣∣ ≤ 1.0

)
≥ 0.95 where Ȳ ∼ G (µ, 12/

√
n) or

P
(∣∣Ȳ − µ∣∣ ≤ 1.0

)
= P

(∣∣Ȳ − µ∣∣
12/
√
n
≤ 1.0

12/
√
n

)

= P

(
|Z| ≤

√
n

12

)
≥ 0.95 where Z ∼ G (0, 1)

Since P (|Z| ≤ 1.96) = 0.95 we want
√
n/12 ≥ 1.96 or

n ≥ (1.96)2 (144) = 553.2. Therefore n = 554.

1.19 (a) If Y ∼ Exponential(θ) then the memoryless property is

P (Y > c+ b|Y > b) = P (Y > c)

This implies that if a battery has lasted b units of time then the probability the
battery will last an additional c units of time does not depend on b but only
depends on c. In other words the battery is not deteriorating over time.

(b) Since Y ∼ Exponential(θ) the probability density function of Y is

f (y) =
1

θ
e−y/θ for y > 0 and θ > 0

for which E (Y ) = θ and V ar (Y ) = θ2.
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(c) To find the pth quantile of the Exponential(θ) distribution we need to find Q (p)

such that P [Y ≤ Q (p)] = p or equivalently 1 − e−Q(p)/θ = p. Solving for Q (p)

we obtain Q (p) = −θ log (1− p).
The median of the Exponential(θ) distribution is m = Q (0.5) = −θ log (0.5) =

θ log 2.

The IQR of the Exponential(θ) distribution is equal to

Q (0.75)−Q (0.25) = −θ log (1− 0.75)− [−θ log (1− 0.25)]

= θ [log (0.75)− log (0.25)]

= θ log

(
0.75

0.25

)
= θ log (3)

(d)

(i) A reasonable estimate of the mean θ is the sample mean
ȳ = 7442.8

20 = 372.14.

(ii) An estimate of

P (Y > 100) =

∞∫
100

1

θ
e−y/θdy = e−100/θ

is e−100/372.14 = 0.7644

(e)

(i)

E
(
Ȳ
)

=
1

n

n∑
i=1

E (Yi) =
1

n

n∑
i=1

θ =
1

n
(nθ) = θ

and V ar
(
Ȳ
)

=

(
1

n

)2 n∑
i=1

V ar (Yi) since Y ′i s are independent r.v.’s

=

(
1

n

)2 n∑
i=1

θ2 =

(
1

n

)2 (
nθ2
)

=
θ2

n
→ 0 as n→∞

For large values of n, the sample mean Ȳ should be close to the mean θ.

(ii) By the Central Limit Theorem

P
(
Ȳ − 1.6449θ/

√
n ≤ θ ≤ Ȳ + 1.6449θ/

√
n
)

= P

(∣∣∣∣ Ȳ − θθ/
√
n

∣∣∣∣ ≤ 1.6449

)
≈ P (|Z| ≤ 1.6449) where Z ∼ N (0, 1)

= 2P (Z ≤ 1.6449)− 1 = 2 (0.95)− 1 = 0.9
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1.20 (a) E
(
Y 2
i

)
= V ar (Yi) + [E (Yi)]

2 = σ2 + µ2.

(b)

E(Ȳ ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E (Yi) =
1

n

n∑
i=1

µ =
1

n
(nµ) = µ

Since Y1, Y2, . . . , Yn are independent random variables

V ar(Ȳ ) = V ar

(
1

n

n∑
i=1

Yi

)
=

(
1

n

)2 n∑
i=1

V ar (Yi) =

(
1

n

)2 n∑
i=1

σ2

=

(
1

n

)2 (
nσ2

)
=
σ2

n

E
[
(Ȳ )2

]
=

[
E
(
Ȳ
)]2

+ V ar
(
Ȳ
)

= µ2 +
σ2

n

(c)

E
(
S2
)

=
1

n− 1

{
n∑
i=1

E
(
Y 2
i

)
− nE

[(
Ȳ
)2]}

=
1

n− 1

[
n∑
i=1

(
µ2 + σ2

)
− n

(
µ2 +

σ2

n

)]
=

1

n− 1

[
n
(
µ2 + σ2

)
− nµ2 − σ2

]
=

1

n− 1

[
(n− 1)σ2

]
= σ2

1.26 (a) This is an experimental study because the researchers controlled the treatments
that the premature babies received.

(b) The researchers are interested in the population of premature babies in New
York state at the time of the study. The units are premature babies.

(c) One variate is heart rate. This is a discrete variate.
Another variate is respiratory rate. This is a discrete variate.
Another variate is oxygen saturation. This is a continuous variate.
Another variate is sucking pattern. This is an ordinal variate.
Another variate is activity level. This is a categorical variate.
Another variate is treatment type. This is a categorical variate.
Another variate is the hospital the baby was in. This is a categorical variate.

(d) Here are several examples of attributes. There are other possible attributes:
The differences in mean or average heart rate between the four treatments.
The differences in mean or average respiratory rate between the four treatments.
The differences in mean or average oxygen saturation between the four treat-
ments.
The differences in the distribution of sucking behaviours between the four treat-
ments.
The differences in the distribution of activity levels between the four treatments.
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SOLUTIONS TO CHAPTER 2
PROBLEMS

2.1 (a)

G (θ) = θa (1− θ)b for 0 < θ < 1

g (θ) = logG (θ) = a log θ + b log (1− θ) for 0 < θ < 1

g′ (θ) =
a

θ
− b

1− θ =
a (1− θ)− bθ
θ (1− θ) =

a− (a+ b) θ

θ (1− θ)
g′ (θ) = 0 if θ =

a

a+ b

Since g′ (θ) > 0 for 0 < θ < a
a+b and g

′ (θ) < 0 for 1 > θ > a
a+b then by the First

Derivative Test g (θ) has a maximum value at θ = a
a+b .

(b)

G (θ) = θ−ae−b/θ for θ > 0

g (θ) = logG (θ) = −a log θ − b

θ
for θ > 0

g′ (θ) =
−a
θ

+
b

θ2 =
−aθ + b

θ2

g′ (θ) = 0 if θ =
b

a

Since g′ (θ) > 0 for 0 < θ < b
a and g′ (θ) < 0 for θ > b

a then by the First
Derivative Test g (θ) has a maximum value at θ = b

a .

(c)

G (θ) = θae−bθ, θ > 0

g (θ) = logG (θ) = a log θ − bθ, θ > 0

g′ (θ) =
a

θ
− b =

a− bθ
θ

g′ (θ) = 0 if θ =
a

b

Since g′ (θ) > 0 for 0 < θ < a
b and g′ (θ) < 0 for θ > a

b then by the First
Derivative Test g (θ) has a maximum value at θ = a

b .

23
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(d)

G (θ) = e−a(θ−b)2 for θ ∈ <
g (θ) = logG (θ) = −a (θ − b)2 for θ ∈ <
g′ (θ) = −2a (θ − b)
g′ (θ) = 0 if θ = b

Since g′ (θ) > 0 for θ < b and g′ (θ) < 0 for θ > b then by the First Derivative
Test g (θ) has a maximum value at θ = b.

2.2 If y = 0 then

L (θ) = P (Y = 0; θ) =

(
n

0

)
θ0 (1− θ)n = (1− θ)n for 0 ≤ θ ≤ 1

L (θ) is a decreasing function for θ ∈ [0, 1] and its maximum value on the interval
[0, 1] occurs at the endpoint θ = 0 and so θ̂ = 0 = 0

n .

If y = n then

L (θ) = P (Y = n; θ) =

(
n

n

)
θn (1− θ)0 = θn for 0 ≤ θ ≤ 1

L (θ) is an increasing function for θ ∈ [0, 1] and its maximum value on the interval
[0, 1] occurs at the endpoint θ = 1 and so θ̂ = 1 = n

n .

In both cases θ̂ = y
n .

2.3 (a) The probability of the observed results for Experiment 1 is

P (total number of individuals examined = 100; θ)

=

(
99

9

)
θ10 (1− θ)90 for 0 ≤ θ ≤ 1

The probability of the observed results for Experiment 2 is

P (10 individuals with blood type B ; θ)

=

(
100

10

)
θ10 (1− θ)90 for 0 ≤ θ ≤ 1

The likelihood function in both cases simplifies to

L (θ) = θ10 (1− θ)90 for 0 ≤ θ ≤ 1

if we ignore constants with respect to θ. The log likelihood function is

l (θ) = 10 log θ + 90 log (1− θ) for 0 < θ < 1
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Now

l′ (θ) =
10

θ
− 90

1− θ

=
10− 100θ

θ (1− θ) = 0 if θ =
10

100
= 0.1

and the maximum likelihood estimate of θ is θ̂ = 0.1.

(b) Let Y = the number of donors with blood type B. Then Y ∼ Binomial(n, 0.1)

and E (Y ) = 0.1n and V ar (Y ) = 0.1 (0.9)n = 0.09n. We went to find n such
that P (Y ≥ 10) ≥ 0.90. By the Normal approximation to the Binomial we have

P (Y ≥ 10) ≈ P

(
Z ≥ 9.5− 0.1n√

0.09n

)
where Z ∼ N (0, 1)

Since P (Z ≥ −1.2816) = 0.90 we solve

9.5− 0.1n√
0.09n

= −1.2816

or
n2 − 204.78n+ 9025 = 0

which gives n = 140.6. Since

P (Y ≥ 10) = 1-pbinom(9,139,0.1) = 0.8981225

P (Y ≥ 10) = 1-pbinom(9,140,0.1) = 0.9027362

P (Y ≥ 10) = 1-pbinom(9,141,0.1) = 0.9071738

we can see that n = 140 is the smallest value of n such that P (Y ≥ 10) ≥ 0.90.

2.4 (a) The likelihood function is

L (θ) =
n∏
i=1

θyi−1 (1− θ) = θ

n∑
i=1

yi−n
(1− θ)n

= θn(ȳ−1) (1− θ)n for 0 ≤ θ < 1

if ȳ > 1. The log likelihood is

l (θ) = n (ȳ − 1) log θ + n log (1− θ) for 0 < θ < 1

Solving

l′ (θ) =
n (ȳ − 1)

θ
− n

1− θ =
n (ȳ − 1) (1− θ)− nθ

θ (1− θ) = 0

gives the maximum likelihood estimate

θ̂ =
ȳ − 1

ȳ
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If ȳ = 1 then L (θ) = (1− θ)n which is a decreasing function for 0 < θ < 1. The
maximum value of L (θ) = (1− θ)n on the interval [0, 1) occurs at the endpoint
θ = 0 and so θ̂ = 0. Therefore

θ̂ =
ȳ − 1

ȳ

holds for all values of ȳ.

(b) The relative likelihood function is

R (θ) =
L (θ)

L(θ̂)
=

θn(ȳ−1) (1− θ)n

θ̂
n(ȳ−1)

(
1− θ̂

)n
=

[(
θ

θ̂

)(ȳ−1)(1− θ
1− θ̂

)]n
for 0 ≤ θ < 1 and ȳ > 1

If n = 200 and
200∑
i=1

yi = 400 then ȳ = 400
200 = 2, θ̂ = 2−1

2 = 0.5, and

R (θ) =

[(
θ

0.5

)(
1− θ
0.5

)]200

= [4θ (1− θ)]200 for 0 ≤ θ < 1

(c) A graph of R (θ) is given in Figure 2.1.
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Figure 2.1: Relative likelihood function for fracture data

(d) Since p = P (Y = 1; θ) = (1− θ) then by the invariance property of maximum
likelihood estimates the maximum likelihood estimate of p based on the data in
(c) is p̂ = (1− θ̂) = 1− 0.5 = 0.5.
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2.5 (a) Since t = 1, the likelihood function is

L(θ) =
10∏
i=1

θyie−θ

yi!
=

(
10∏
i=1

yi!

)−1

θ41e−10θ for θ ≥ 0

or more simply (ignoring constants with respect to θ)

L(θ) = θ41e−10θ for θ > 0

The log likelihood function is

l (θ) = 41 log θ − 10θ for θ > 0

Solving

l′ (θ) =
41

θ
− 10 = 0

gives the maximum likelihood estimate θ̂ = 4.1.

(b) Since

p = P (no transactions in a two minute interval ; θ) =
(2θ)0 e−2θ

0!
= e−2θ

then by the invariance property of maximum likelihood estimates the maximum
likelihood estimate of p is p̂ = e−2θ̂ = 0.000275.

2.6 (a) The joint probability density function of the observations y1, y2, ..., yn is given
by

n∏
i=1

f(yi; θ) =
n∏
i=1

2yi
θ
e−y

2
i /θ

= 2n(
n∏
i=1

yi)
1

θn
exp

(
−1

θ

n∑
i=1

y2
i

)
for θ > 0

The likelihood function (ignoring constants with respect to θ) is

L (θ) =
1

θn
exp

(
−1

θ

n∑
i=1

y2
i

)
for θ > 0

and the log likelihood is

l(θ) = −n log(θ)− 1

θ

n∑
i=1

y2
i for θ > 0

Solving

l′(θ) = −n
θ

+
1

θ2

n∑
i=1

y2
i =

1

θ2

(
n∑
i=1

y2
i − nθ

)
= 0

gives the maximum likelihood estimate

θ̂ =
1

n

n∑
i=1

y2
i
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(b) The relative likelihood function is

R (θ) =
L (θ)

L(θ̂)
=

1
θn exp

(
−1
θ

n∑
i=1

y2
i

)
1

θ̂
n exp

(
−1
θ̂

n∑
i=1

y2
i

) for θ > 0

But
θ̂ =

1

n

n∑
i=1

y2
i

so
n∑
i=1

y2
i = nθ̂

Therefore

R (θ) =

1
θn exp

(
−nθ̂

θ

)
1

θ̂
n exp (−n)

=

(
θ̂

θ

)n
en(1−θ̂/θ) for θ > 0

(c) Graphs of R (θ) for n = 20, θ̂ = 3.6 (solid line) and n = 60, θ̂ = 3.6 (dotted line)
are given in Figure 2.2.

(d) Both relative likelihood functions have a maximum value of 1 which occurs at the
maximum likelihood estimate θ = θ̂. The relative likelihood function for n = 20

is more asymmetric and skewed to the right while the relative likelihood function
for n = 60 is more symmetric about the maximum likelihood estimate θ = θ̂ and
rather bell-shaped. The relative likelihood function for n = 20 is more spread
out as compared to the relative likelihood function for n = 60 or equivalently the
relative likelihood function for n = 60 is more concentrated about the maximum
likelihood estimate θ̂.

(e) Since

P (Y > 1; θ) = 1−
1∫
0

2y

θ
e−y

2/θ

= 1 +
(
e−y

2/θ|10
)

= e−1/θ

therefore by the invariance property of maximum likelihood estimates the max-
imum likelihood estimate of P (Y > 1; θ) is

e−1/θ̂ = e−1/3.6 = 0.7574651
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Figure 2.2: Relative likelihood functions for Problem 6

2.7 (a) From Example 2.3.2 the joint likelihood function of µ and σ ignoring constants
can be written as

L(µ, σ) = σ−n exp

[
− 1

2σ2

n∑
i=1

(yi − ȳ)2

]
exp

[
− n

2σ2
(ȳ − µ)2

]
for µ ∈ < and σ > 0

If σ is known then the likelihood function of µ ignoring constants with respect
to µ is

L (µ) = exp
[
− n

2σ2
(ȳ − µ)2

]
for µ ∈ <

The log likelihood function is

l (µ) = − n

2σ2
(ȳ − µ)2 for µ ∈ <

and
l′ (µ) =

n

σ2
(ȳ − µ) = 0 if µ = ȳ

and therefore the maximum likelihood estimate of µ is µ̂ = ȳ which does not
depend on σ.

(b) If µ is known then the likelihood function of σ is

L (σ) =
n∏
i=1

1√
2πσ

exp

[
− 1

2σ2
(yi − µ)2

]
= (2π)−n/2 σ−n exp

[
− 1

2σ2

n∑
i=1

(yi − µ)2

]
for σ > 0
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or more simply (ignoring constants with respect to σ)

L (σ) = σ−n exp

[
− 1

2σ2

n∑
i=1

(yi − µ)2

]
for σ > 0

The log likelihood function is

l (σ) = −n log σ − 1

2σ2

n∑
i=1

(yi − µ)2 for σ > 0

and

l′ (σ) =
−n
σ

+
1

σ3

n∑
i=1

(yi − µ)2 =
1

σ3

[
−nσ2 +

n∑
i=1

(yi − µ)2

]
= 0

if
σ2 =

1

n

n∑
i=1

(yi − µ)2

Therefore the maximum likelihood estimate of σ is

σ̂ =

√
1

n

n∑
i=1

(yi − µ)2

which does depend on µ.

2.8 (a) The likelihood function

L(θ) =
n∏
i=1

(θ + 1)yθi = (θ + 1)n
(

n∏
i=1

yi

)θ
for θ > −1

The log likelihood function is

l(θ) = n log(θ + 1) + θ
n∑
i=1

log(yi) for θ > −1

Solving
d

dθ
l(θ) =

n

1 + θ
+

n∑
i=1

log(yi) = 0

gives
θ̂ =

n

−
n∑
i=1

log(yi)

− 1

(b) The log relative likelihood function is

r (θ) = l (θ)− l(θ̂) = n log

(
θ + 1

θ̂ + 1

)
+ (θ − θ̂)

n∑
i=1

log(yi) for θ > −1

Since
θ̂ =

n

−
n∑
i=1

log(yi)

− 1
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therefore
n∑
i=1

log(yi) = − n

θ̂ + 1

and

r (θ) = n log

(
θ + 1

θ̂ + 1

)
+ n

(
θ̂ − θ
θ̂ + 1

)
for θ > −1

(c) Graphs of r (θ) for n = 15, θ̂ = −0.5652 (solid line) and n = 45, θ̂ = −0.5652

(dotted line) are given in Figure 2.3.

Figure 2.3: Log relative likelihood functions for Problem 8

(d) Both log relative likelihood functions have a maximum value of 0 which occurs
at the maximum likelihood estimate θ = θ̂. Both log relative likelihood functions
are concave down. The log relative likelihood function for n = 45 is more
symmetric about the maximum likelihood estimate θ = θ̂ and more quadratic
in shape than the log relative likelihood function for n = 15. The log relative
likelihood function for n = 15 is more spread out as compared to the relative
likelihood function for n = 45 or equivalently the log relative likelihood function
for n = 45 is more concentrated about the maximum likelihood estimate θ̂.
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2.9 (a) The joint probability density function of the observations y1, y2, ..., yn is given
by

n∏
i=1

f(yi; θ) =
n∏
i=1

θ

yθ+1
i

=
θn

n∏
i=1

yθ+1
i

=
θn(

n∏
i=1

yi

)θ+1

=
θn(

n∏
i=1

yi

)(
n∏
i=1

yi

)θ for θ > 1

The likelihood function (ignoring constants with respect to θ) is

L(θ) = θn
(

n∏
i=1

yi

)−θ
for θ > 1

The log likelihood function is

l(θ) = n log(θ)− θ
n∑
i=1

log(yi) for θ > 1

Solving
d

dθ
l(θ) =

n

θ
−

n∑
i=1

log(yi) = 0

gives
θ̂ =

n
n∑
i=1

log(yi)

(b) The relative likelihood function is

R (θ) =
L (θ)

L(θ̂)
=

θn
(

n∏
i=1

yi

)−θ
θ̂
n
(

n∏
i=1

yi

)−θ̂ =

(
θ

θ̂

)n( n∏
i=1

yi

)θ̂−θ
for θ > 1

2.10 (a)

P (MM) = P (FF ) = P (FF |pair is identical)P (pair is identical)

+P (FF |pair is not identical)P (pair is not identical)

=

(
1

2

)
α+

(
1

2

)(
1

2

)
(1− α) =

1 + α

4

P (MF ) = 1− P (MM)− P (FF ) = 1−
(

1 + α

4

)
−
(

1 + α

4

)
=

1− α
2

where M = male, F = female and α = probability the pair is identical.
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(b)

L (α) =
n!

n1!n2!n3!

(
1 + α

4

)n1 (1 + α

4

)n2 (1− α
2

)n3
where n = n1 + n2 + n3

or more simply (ignoring constants with respect to α)

L (α) = (1 + α)n1+n2 (1− α)n3 for 0 ≤ α ≤ 1

Maximizing L (α) gives α̂ = (n1 + n2 − n3) /n. For n1 = 16, n2 = 16 and
n3 = 18, α̂ = 0.28.

2.11 (a) The parameter θ represents the mean number of points scored in a game by
Wayne when he played for the Edmonton Oilers.

(b) Independence: If Wayne’s performance in a game affected how well he played
in the next game, the assumption of independence (number of points scored in
non-overlapping games are independent) would not hold.
Individuality: This assumption seems reasonably since, if we took a game of
suffi ciently small “size”then the probability that Wayne scored 2 or more points
would be close to zero (events occur singly not in clusters).
Homogeneity or Uniformity: The homogeneity assumption would implied that
Wayne was a consistent player during the 11 years he played in Edmonton. Given
the type of player Wayne was, this assumption seems reasonable.

(c) The sample mean is

1

696

8∑
y=0

yfy

=
1

696
[0 (69) + 1 (155) + 2 (171) + 3 (143) + 4 (79) + 5 (57) + 6 (14) + 7 (6) + 8 (2)]

=
1669

696
≈ 2.3980

Since
8∑
y=0

y2fy

= (0)2 (69) + (1)2 (155) + (2)2 (171) + (3)2 (143)

+ (4)2 (79) + (5)2 (57) + (6)2 (14) + (7)2 (6) + (8)2 (2)

= 5741

therefore the sample variance is

1

695

[
5741− (1669)2

696

]
= 2.501809

The sample mean and sample variance are reasonably close in value for these
data.
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(d) The likelihood function based on the Poisson model and the frequency table is

L (θ) =
696!

69!155!171!143!79!57!14!6!2!0!

×
(
θ0e−θ

0!

)69(
θ1e−θ

1!

)155(
θ2e−θ

2!

)171(
θ3e−θ

3!

)143(
θ4e−θ

4!

)79

×
(
θ5e−θ

5!

)57(
θ6e−θ

6!

)14(
θ7e−θ

7!

)6(
θ8e−θ

8!

)2
 ∞∑
y=9

θye−θ

y!

0

or more simply (ignoring constants with respect to θ)

L (θ) = θ0(69)+1(155)+2(171)+3(143)+4(79)+5(57)+6(14)+7(6)+8(2)

×e−(69+155+171+143+79+57+14+6+2)θ

= θ1669e−696θ for θ ≥ 0

The log likelihood function is

l (θ) = 1669 log θ − 696θ for θ > 0

and

l′ (θ) =
1669

θ
− 696 =

1669− 696θ

θ
= 0 if θ =

1669

696
≈ 2.3980

The maximum likelihood estimate of θ is θ̂ = 1669/696 which is the sample
mean.

(e) The expected frequencies are calculated using

ey = 696

(
1669
696

)y
e−1669/696

y!
for y = 0, 1, . . . , 8

and are given in the table below rounded to 2 decimal places:

Number of Points
in a Game: y

Observed Number of
Games with y points: fy

Expected Number of
Games with y points: ey

0 69 63.27

1 155 151.71

2 171 181.90

3 143 145.40

4 79 87.17

5 57 41.81

6 14 16.71

7 6 5.72

8 2 1.72

≥ 9 0 0.60

Total 696 696.01
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(f) There is quite good agreement between the observed and expected frequencies.
Also the sample mean and sample variance are close in value which is what we
expect for Poisson data. The Poisson model fits these data well. Recall the
homogeneity assumption for the Poisson process. Since a Poisson model fits the
data well this suggests that Wayne was a very consistent player when he played
with the Edmonton Oilers.

2.12 (a) The parameter θ represents the mean number of points scored in a game by
Wayne when he played for the Edmonton Oilers.

(b) See the answer for part (b) for Problem 11.

(c) The sample mean is

1

783

8∑
y=0

yfy

=
1

783
[0 (219) + 1 (259) + 2 (185) + 3 (90) + 4 (24) + 5 (4) + 6 (2)]

=
1027

783
≈ 1.311622

Since

8∑
y=0

y2fy

= (0)2 (219) + (1)2 (259) + (2)2 (185) + (3)2 (90) + (4)2 (24) + (5)2 (4) + (6)2 (2)

= 2365

therefore the sample variance is

1

782

[
2365− (1027)2

783

]
= 1.301745

The sample mean and sample variance are very close in value for these data.

(d) The maximum likelihood estimate is equal to the sample mean so θ̂ = 1027/783 ≈
1.311622.

(e) The expected frequencies are calculated using

ey = 783

(
1027
783

)y
e−1027/783

y!
for y = 0, 1, . . . , 6
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and are given in the table below rounded to 2 decimal places:

Number of Points
in a Game: y

Observed Number of
Games with y points: fy

Expected Number of
Games with y points: ey

0 219 210.93

1 259 276.66

2 185 181.43

3 90 79.32

4 24 26.01

5 4 6.82

6 2 1.82

≥ 7 0 0.33

Total 783 783

(f) There is quite good agreement between the observed and expected frequencies.
Also the sample mean and sample variance are close in value which is what we
expect for Poisson data. The Poisson model fits these data well.

2.13 (a) Since P (Y = 1; θ) = θ, the parameter θ represents the probability a randomly
chosen family has one child.

(b) Let Fy = the number of families with y children. The probability of observing
the data

y 0 1 · · · ymax > ymax Total
fy f0 f1 · · · fmax 0 n

is

n!

f0!f1! · · · fmax!0!

(
1− 2θ

1− θ

)f0
(θ)f1

(
θ2
)f2 · · · (θymax)fmax

 ∞∑
y=ymax+1

θy

0

n!

f0!f1! · · · fmax!

(
1− 2θ

1− θ

)f0 ymax∏
y=1

θyfy for 0 ≤ θ ≤ 0.5

If we ignore constants with respect to θ, the likelihood function is

L (θ) =

(
1− 2θ

1− θ

)f0 ymax∏
y=1

θyfy

and the log likelihood is

l(θ) = f0 log

(
1− 2θ

1− θ

)
+

(
ymax∑
y=1

yfy

)
log θ for 0 < θ < 0.5

= f0 log (1− 2θ)− f0 log(1− θ) + T log θ where T =
ymax∑
y=1

yfy
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Now

l′(θ) =
−2f0

1− 2θ
+

f0

1− θ +
1

θ
T

=
1

θ (1− θ) (1− 2θ)

[
2Tθ2 − (f0 + 3T ) θ + T

]
and l′(θ) = 0 if

θ =
(f0 + 3T )± [(f0 + 3T )2 − 8T 2]1/2

4T

and since

(f0 + 3T ) + [(f0 + 3T )2 − 8T 2]1/2

4T
≥ f0 + 3T

4T
≥ 3

4
> 0.5

therefore

θ̂ =
(f0 + 3T )− [(f0 + 3T )2 − 8T 2]1/2

4T

(c) For y = 1, 2, ..., the probability that a randomly selected family has y children
is θy. Suppose for simplicity there are N families in the population where N is
very large. Then the number of families that have y children is N × (probability
a family has y children) = Nθy for y = 1, 2, . . . and there is a total of yNθy

children in families of y children and a total of
∞∑
y=1

yNθy children altogether.

Therefore the probability a randomly chosen child is in a family of x children is

xNθx

∞∑
x=1

xNθx
= cxθx for x = 1, 2, . . .

Since ∞∑
x=1

cxθx = 1

and ∞∑
x=1

xθx =
θ

(1− θ)2

we obtain c = (1− θ)2/θ and

P (X = x; θ) =
(1− θ)2

θ
xθx = x (1− θ)2 θx−1 for x = 1, 2, . . . and 0 < θ ≤ 1

2

(d) The probability of observing the given data for model (c) is

33!

22!7!3!1!

[
(1− θ)2

]22 [
2 (1− θ)2 θ

]7 [
3 (1− θ)2 θ2

]3 [
4 (1− θ)2 θ3

]
for 0 < θ ≤ 1

2

The likelihood function is

L (θ) = (1− θ)2(22+7+3+1) θ7+2(3)+3

= θ16 (1− θ)66 for 0 < θ ≤ 1

2
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which is maximized for θ = 16/ (16 + 66) = 16/82 = 8/41 = 0.1951.

Since the probability a family has no children is

P (Y = 0; θ) =
1− 2θ

1− θ = g (θ)

then by the Invariance Property of maximum likelihood estimates the maximum
likelihood of g (θ) is

g(θ̂) =
1− 2θ̂

1− θ̂
=

1− 2 (0.1951)

1− 0.1951
= 0.7576

(e) For these data f0 = 0, T = 49. and l′(θ) = 49/θ = 0 has no solution. Since
l′(θ) = 49/θ > 0 for all 0 < θ ≤ 0.5, therefore l(θ) is an increasing function on
this interval. Thus the maximum value of l(θ) occurs at the endpoint θ = 0.5

and therefore θ̂ = 0.5.

2.14 (a) Let Yi = the number of particles emitted in time interval i of length ti, i =

1, 2, . . . , n. We assume that the Yi’s are independent random variables. The
likelihood function is the probability of observing the data y1, y2, . . . , yn which
is

L (θ) = P (Y1 = y1, Y2 = y2, . . . , Yn = yn; θ)

=
n∏
i=1

P (Yi = yi; θ) =
n∏
i=1

(θti)
yi e−θti

yi!

=
n∏
i=1

(ti)
yi

yi!

n∏
i=1

θyie−θti

or more simply (ignoring constants with respect to θ)

L (θ) =
n∏
i=1

θyie−θti = θnȳe−θnt̄ for θ ≥ 0

where t̄ = 1
n

n∑
i=1

ti. The log likelihood function is

l (θ) = (nȳ) log θ − (nt̄) θ for θ > 0

and

l′ (θ) =
nȳ

θ
− nt̄ =

n

θ
(ȳ − t̄θ) = 0

if

θ =
ȳ

t̄

so θ̂ = ȳ
t̄ is the maximum likelihood estimate of θ.
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(b) Let X = number of intervals of length t with no particles emitted. Then
X ∼ Binomial(n, p) where

p = P (X = 0; θ) =
(θt)0 e−θt

0!
= e−θt

Suppose that x intervals were observed with no particles. SinceX ∼ Binomial(n, p)
the maximum likelihood estimate of p is p̂ = x

n . Since p = e−θt implies θ = −(log p)
t

then by the invariance property of maximum likelihood estimates θ̂ = −(log p̂)
t .

2.16 (a)
y(1) q (0.25) q (0.5) q (0.75) y(n) IQR range ȳ s g1 g2

3 16.375 19.5 22 30 5.625 27 19.13 4.4498 −0.50 4.32

(b) The proportion of observations in the interval [ȳ − s, ȳ + s] = [14.68, 23.58] is
71/100 = 0.71. If Y ∼ G (µ, σ) then

P (Y ∈ [µ− σ, µ+ σ]) = P (|Y − µ| ≤ σ) = P

(
|Y − µ|
σ

≤ 1

)
= P (|Z| ≤ 1) = 2P (Z ≤ 1)− 1 where Z ∼ N (0, 1)

= 2 (0.84134)− 1 = 0.68268

≈ 0.68

The observed proportion of observations in the interval which is 0.71 is slightly
higher than what would be expected for Gaussian data (0.68).

(c) A boxplot and qqplot of the data are given in Figures 2.4 and 2.5.

Marks

5

10

15

20

25

30

Figure 2.4: Boxplot for tutorial test 1 data

(d) For Gaussian data we expect the sample skewness to be close to zero and the
sample mean and sample median to be approximately equal. For these data
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Figure 2.5: Qqplot for tutorial test data

the sample skewness = −0.50 and the sample median = 19.5 > sample mean
= 19.14. Both of these results indicate that the data are not symmetric but
slightly skewed to the left. This is also evident in the boxplot in which neither
the box nor the whiskers are divided approximately in half by the sample me-
dian.
For Gaussian data we expect the sample kurtosis to be close to 3. The sample
kurtosis for these data equals 4.32 which indicates that there are more observa-
tions in the tails then would be expected for Gaussian data.
In the list of observations as well as the boxplot we observe two extreme observa-
tions, 3 and 5, which are also evident in the qqplot (see lower left hand corner of
graph). These extremes have a large influence on the sample mean as well as on
the sample skewness and sample kurtosis. If the sample mean, sample median,
sample skewness and sample kurtosis were recalculated with these observations
removed then the values of these numerical summaries would be more in agree-
ment with what we expect to see for Gaussian data.
For Gaussian data we expect the points to be scattered about a straight line
although the points at both ends may lie further from the straight line since the
quantiles of the Gaussian distribution change more rapidly in both tails of the
distribution. Except for the outliers, the points in this qqplot lie are scattered
about a straight line.
For these data the IQR = 5.75 is close in value to 1.349s = 1.349 (4.4498) = 6.00

which is what we expect for Gaussian data.
The proportion of observations in the interval [ȳ − s, ȳ + s] is slightly higher than
we would expect for Gaussian data. This also agrees with the sample kurtosis
value of 4.3 being larger than 3.
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Overall, except for the two outliers, a Gaussian model fits these data well. It
would be a good idea to do any formal analyses of the data with and without the
outliers to determine the effect of these outliers on the conclusions of the analy-
ses. Note also that the variate we are modeling here is a discrete variate since
there were only a finite number of possible marks out of 30 that were assigned
in this test. Therefore the model is only approximate.

2.17 (a)
y(1) q (0.25) q (0.5) q (0.75) y(n) IQR range ȳ s g1 g2

142 156 160 164 178 8 36 159.77 6.03 0.13 3.16

(b) The number of observations in the interval [ȳ − s, ȳ + s] = [153.75, 165.80] is
244 or 69.5% and the number of observations in the interval [ȳ − 2s, ȳ + 2s] =

[147.72, 171.83] is 334 or 95.2%.
If Y ∼ G (µ, σ) then P (Y ∈ [µ− σ, µ+ σ]) = 0.68268 and P (Y ∈ [µ− 2σ, µ+ 2σ]) =

0.9545.
The observed and expected proportions and very close to what one would expect
if the data were Normally distributed.

(c) The frequency histogram and superimposed Gaussian probability density func-
tion are given in the top left graph in Figure 2.6.

(d) The empirical cumulative distribution function and superimposed Gaussian cu-
mulative distribution function are given in the top right graph in Figure 2.6.

(e) The boxplot is given in the bottom left graph in Figure 2.6. The qqplot is given
in the bottom right graph in Figure 2.6. The “steplike”behaviour of the plot is
due to the rounding of the data to the nearest centimeter.

(f) Note that the sample size of this data set is reasonably large (n = 351). The
sample skewness for these data is 0.13 while for Gaussian data we expect a sam-
ple skewness close to 0. The sample kurtosis for these data is 3.16 while for
Gaussian data we expect a sample kurtosis close to 3. Both the sample skewness
and the sample kurtosis are reasonably close to what we expect for Gaussian
data.
For Gaussian data we expect the IQR to be close to 1.349σ ≈ 1.349s = 8.13

which is very close to IQR = 8.
All the numerical summaries indicate good agreement with the model. The
relative frequency histogram has the shape of a Gaussian probability density
function. The empirical cumulative distribution function and the Gaussian cu-
mulative distribution function also have similar shapes. The boxplot is consistent
with Gaussian data. The points in the qqplot are scattered along a straight line
with more variability at both ends which is what we expect for Gaussian data.
The agreement between the observed and expected summaries for this data set
indicated above is what we expect for a data set of this size. A Gaussian model
seems very reasonable for these data.
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Figure 2.6: Plots for Heights of Elderly Women

2.18 (a) µ̂ = 1.744, σ̂ = 0.0664 (M) µ̂ = 1.618, σ̂ = 0.0636 (F)

(b) 1.659 and 1.829 (M) 1.536 and 1.670 (F)

(c) 0.098 (M) and 0.0004 (F)

(d) 11/50 = 0.073 (M) 0 (F)
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2.19 See Figure 2.7. Note that the qqplot for the log yi’s is far more linear than for the
yi’s indicating that the Normal model is more reasonable for the transformed data.
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Figure 2.7: Qqplot of log brake pad lifetimes

2.20 (a) If they are independent P (S and H) = P (S)P (H) = αβ. The others are similar.

(b) The Multinomial probability function evaluated at the observed values is

L(α, β) =
100!

20!15!22!43!
(αβ)20 [α (1− β)]15 [(1− α)β]22 [(1− α) (1− β)]43

or more simply (ignoring constants with respect to α and β)

L(α, β) = α35 (1− α)65 β42 (1− β)58 for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1

The log likelihood is

l(α, β) = 35 log(α)+65 log(1−α)+42 log(β)+58 log(1−β) for 0 < α < 1, 0 < β < 1

Setting the derivatives to zero gives the maximum likelihood estimates α̂ = 0.35

and β̂ = 0.42.

(c) The expected frequencies are

100α̂β̂, 100α̂
(

1− β̂
)
, 100 (1− α̂) β̂, 100 (1− α̂)

(
1− β̂

)
or 14.7, 20.3, 27.3, 37.7 which can be compared with 20, 15, 22, 43. The observed
and expected frequencies do not appear to be very close. In Chapter 7 we will
see how to construct a formal test of the model.



44 SOLUTIONS TO CHAPTER 2 PROBLEMS

2.21 See Figures 2.8 and 2.9.
For the data sets of size n = 100 the points lie closely to a straight line. For the data
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Figure 2.8: Qqplots for Gaussian data for sample size n = 30

sets of size n = 30 the points lie roughly along a straight line but not as closely to a
straight line as for n = 100. This means that for smaller data sets it would be more
diffi cult to decide on the basis of just a qqplot how reasonable the Gaussian model
is. Note also that, even for datasets of size n = 100, some unusual behaviour can be
observed.
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Figure 2.9: Qqplots for Gaussian data for sample size n = 100

2.22 See Figures 2.10 and 2.11.
Note that the plots are grouped into four just to save space but it is best to view these
graphs as separate plots in order to obtain the information provided by the plot.

Qqplot 1 looks S-shaped which indicates the distribution of the data is symmetric
and the sample skewness would be close to 0. The symmetry of the qqplot indicates
that the distribution of the data would be symmetric about the sample median which
is close to 0.45. This S-shape also indicates that the sample kurtosis would be less
than 3. A symmetric model with lighter tails than the Gaussian distribution (e.g.
Uniform) would provide a better fit to the data.

Qqplot 2 looks somewhat S-shaped which indicates the distribution of the data is
symmetric and the sample skewness would be close to 0. This S-shape also indicates
that the sample kurtosis would be less than 3. The sample median is approximately
0.3. There are many observations with values close to 1 and many observations with
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Figure 2.10: QQplots for Problem 21

values close to 0. The other observations are more uniformly distributed between 0

and 1. A symmetric model with more observations at both ends of the interval [0, 1]

and fewer observations in the middle (e.g. a U shaped probability density function
on the interval [0, 1]) would provide a better fit to the data.

Qqplot 3 looks like an S-shape which had been turned upside down which indicates
the underlying distribution is symmetric with skewness close to 0. The symmetry of
the qqplot indicates that the distribution of the data would be symmetric about the
sample median which is close to 0. The underlying distribution has more observations
in the tails than is expected with Gaussian data so the sample kurtosis will be greater
than 3.

Qqplot 4 also looks like an S-shape which had been turned upside down which indi-
cates the underlying distribution is symmetric with sample skewness close to 0. The
symmetry of the qqplot indicates that the distribution of the data would be symmetric
about the sample median which is close to 0. The underlying distribution has more



47

2 1 0 1 2

0
2

4
6

Q q p lo t 5

G (0 ,1 )  Q u a n t ile s

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2

4
2

0

Q q p lo t 6

G (0 ,1 )  Q u a n t ile s

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2

2
6

Q q p lo t 7

G (0 ,1 )  Q u a n t ile s

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2

0
2

4

Q q p lo t 8

G (0 ,1 )  Q u a n t ile s

S
am

pl
e 

Q
ua

nt
ile

s

Figure 2.11: Qqplots for Problem 21

observations in the tails than is expected with Gaussian data so the sample kurtosis
will be greater than 3.

Qqplot 5 is very U-shaped which indicates the distribution of the data is not symmetric
but has a long right tail and the sample skewness would be positive. A non-symmetric
model with a long right tail (e.g. Exponential) would provide a better fit to the data.

Qqplot 6 is shaped like an upside down U which indicates the distribution of the data
is not symmetric but has a long left tail and the sample skewness would be negative.
A non-symmetric model with a long left tail would provide a better fit to the data.

Qqplot 7 is slightly U-shaped which indicates the underlying distribution is not sym-
metric and has a slightly longer right tail so the sample skewness is positive.

Qqplot 8 is slightly U-shaped which indicates the underlying distribution is not sym-
metric and has a slightly longer right tail so the sample skewness is positive.
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2.23 (a) The median of the G (0, 1) distribution is m = 0. Reading from the qqplot
the sample quantile on the y−axis which corresponds to 0 on the x−axis is
approximately equal to 1.0 so the sample median for these data is approximately
1.0.

(b) To determine q (0.25) for the these data we note that P (Z ≤ −0.6745) = 0.25 if
Z ∼ N (0, 1). Reading from the qqplot the sample quantile on the y−axis which
corresponds to −0.67 on the x−axis is approximately equal to 0.4 so q (0.25)

is approximately 0.4. To determine q (0.75) for the these data we note that
P (Z ≤ 0.6745) = 0.75 if Z ∼ N (0, 1). Reading from the qqplot the sample
quantile on the y−axis which corresponds to 0.67 on the x−axis is approxi-
mately equal to 1.5 so q (0.75) is approximately 1.5. The IQR for these data is
approximately 1.5− 0.4 = 1.1.

(c) The range of the data can be determined approximately by looking at the height
of the minimum observation which is approximately 0 and the height of the
maximum observation which is approximately 2 so the range is approximately
2− 0 = 2.

(d) The frequency histogram of the data would be approximately symmetric about
the sample mean.

(e) The frequency histogram would most resemble a Uniform probability density
function.

2.24

L (θ) =
n∏
i=1

f (yi; θ)

=
n∏
i=1

1

θ
if θ ≥ yi i = 1, 2, . . . , n

=
1

θn
if θ ≥ y(n) = max (y1, y2, . . . , yn)

where θ−n is a decreasing function of θ. Note also that L (θ) = 0 for 0 < θ < y(n).
Therefore the maximum value of L (θ) occurs at θ = y(n) and therefore the maximum
likelihood estimate of θ is θ̂ = y(n).

2.25 (a)

P (Y > c; θ) =

∞∫
c

1

θ
e−y/θdy = e−c/θ

(b) For the i’th piece that failed at time yi < c, the contribution to the likelihood
is 1

θe
−yi/θ. For those pieces that survive past time c, the contribution to the

likelihood is the probability of the event, P (Y > c; θ) = e−c/θ. Therefore the
likelihood is

L(θ) =

(
k∏
i=1

1

θ
e−yi/θ

)(
e−c/θ

)n−k
for θ > 0
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and the log relative likelihood is

l(θ) = −k log(θ)− 1

θ

k∑
i=1

yi − (n− k)
c

θ
for θ > 0

Solving l′ (θ) = 0 we obtain the maximum likelihood estimate,

θ̂ =
1

k

[
k∑
i=1

yi + (n− k)c

]
(c) When k = 0 and c > 0 the maximum likelihood estimator is θ̂ =∞. In this case

there are no failures in the time interval [0, c] and this is more likely to happen
when E (Y ) = θ is very large.

2.26 (a) If there is adequate mixing of the tagged animals, the number of tagged animals
caught in the second round is a random sample selected without replacement so
follows a hypergeometric distribution (see the STAT 230 Course Notes).

(b)
L(N + 1)

L(N)
=

(N + 1− k)(N + 1− n)

(N + 1− k − n+ y)(N + 1)

and L(N) reaches its maximum within an integer of kn/y.

(c) The model requires suffi cient mixing between captures that the second stage is
a random sample. If they are herd animals this model will not fit well.

2.27 The likelihood function is

L(α, β) =
n∏
i=1

(α+ βxi)
yi

yi!
e−(α+βxi)

or more simply (ignoring constants with respect to α and β)

L(α, β) =
n∏
i=1

(α+ βxi)
yi e−(α+βxi)

The log likelihood is

l(α, β) =
n∑
i=1

[
yi(α+ βxi)− e(α+βxi)

]
To maximize we set the partial derivatives equal to zero and solve

∂

∂α
l(α, β) =

n∑
i=1

[
yi − e(α+βxi)

]
= 0

∂

∂β
l(α, β) =

n∑
i=1

xi

[
yi − e(α+βxi)

]
= 0

For a given set of data we can solve this system of equations numerically but not
explicitly.
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SOLUTIONS TO CHAPTER 3
PROBLEMS

3.1 (a) This study would best be described as a sample survey since the population of
interest (university students in Ontario in 2019) is finite. The purpose of the
study was to learn about the attributes of this population and the researchers
did not attempt to change or control any of the variates for the sampled units.

(b) The target population is the set of all university students in Ontario at the time
of the study (or in 2019).

(c) The study population is the set of university students living in the Kitchener
Waterloo region in September 2019.

(d) The sampling protocol consisted of taking a random sample of 250 students
attending a specific Laurier-Waterloo football game in September 2019. The
sample consists of the 250 students and the sample size is 250.

(e) One variate is whether the student is male or female. The other variate is
whether the student agrees or disagrees with the statement “I have significant
trouble paying my bills.”Both variates are categorical variates.

(f) One attribute is the proportion of male students who agree with the statement
“I have significant trouble paying my bills.”Another attribute is the proportion
of female students who agree with the statement

(g) There may be systematic differences between KW university students and the
population of Ontario university students, for example, university students in
Toronto and Thunder Bay may have different financial worries then KW uni-
versity students. This could be a possible source of study error since this could
result in the proportion of students who agree with the statement in the target
population (Ontario university students) to be different than the proportion of
students in the study population (KW university students).

(h) There may be systematic differences between KW university students and stu-
dents who attend a particular Laurier-Waterloo football game, for example, uni-
versity students at a football game may have different financial worries since they
are attending a football game and not working at a part-time job. This could

51
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be a possible source of sample error since this could result in the proportion of
students who agree with the statement in the study population (KW university
students) to be different than the proportion of students in the sample (students
at the football game).

(i) An estimate of the proportion of males in the study population who agree with
the statement “I have significant trouble paying my bills.”based on the sample
is 68/145 or approximately 47%. An estimate of the proportion of females in
the study population who agree with the statement “I have significant trouble
paying my bills.”based on the sample is 42/105 or 40%.

(j) The most serious limitation is that the study population only consisted of KW
university students which could lead to study error. Another serious limitation is
that the sample only consisted of students who attended a particular university
football game which could lead to sample error.

3.2 (a) This study would best be described as an experimental study because the re-
searchers determined, using randomization, which patient was in the aspirin
group and which patient was in the standard care alone group.

(b) The Problem was to determine if the aspirin treatment reduced 28−day mortality
from Covid-19 as compared to standard care alone treatment.

(c) This is a causative Problem because this was an experimental study in which
the researchers wanted to determine if the aspirin treatment caused a reduction
in the 28−day mortality from Covid-19 as compared to standard care alone
treatment.

(d) The target population for this study could reasonably described as people at
least 18 years of age who were hospitalized for Covid-19 between November 2020
and March 2021 in all hospitals in the United Kingdom. (Other answers are
possible. The target population could be increased to include adults in other
countries which have a similar health care system to the British health care
system. All adults in the world would not be a suitable targer population.)

(e) The study population for this study consists of people at least 18 years of age
who were hospitalized for Covid-19 between November 2020 and March 2021 at
the 177 hospitals in the United Kingdom.

(f) Between November 2020 and March 2021, doctors at 177 hospitals in the United
Kingdom who had adult patients who tested positive for COVID-19 and needed
to be hospitalized, were encouraged to recruit these patients to the study. Patient
consent was required to be in the study. The sample consisted of the 7351 +

7541 = 14892 patients who were enroled in the study. The sample size was
14892.

(g) One important variate is which treatment the patient received, aspirin or stan-
dard care alone. This variate is categorical. Another important variate is
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whether or not the patient died of Covid-19 within 28 days. This variate is
categorical.

(h) An important attribute of interest is the proportion of patients in the aspirin
group who died of Covid-19 within 28 days. Another important attribute of
interest is the proportion of patients in the standard care alone group who died
of Covid-19 within 28 days.

(i) Here are other variates mentioned in the article:
time to discharge from hospital - this is a continuous variate
whether a patient was on invasive mechanical ventilation at randomisation - this
is a categorical variate
time to invasive mechanical ventilation for patients not on invasive mechanical
ventalation at randomisation - this is a continuous variate
time to death for patients not on invasive mechanical ventalation at randomisa-
tion - this is a continuous variate
identity of the recruiting physician for the patient - this is a categorical variate
patient’s age at recruitment - this is a continuous variate
patient’s sex - this is a categorical variate
Covid-19 onset date - this is a discrete variate
Covid-19 severity - this is a ordinal variate

(j) Attributes for the variates in (i):
time to discharge from hospital - mean (or median) time to discharge
whether a patient was on invasive mechanical ventilation at randomisation - pro-
portion of patiens on invasive mechanical ventilation at time of recruitment
time to invasive mechanical ventilation for patients not on invasive mechanical
ventalation at randomisation - mean (or median) time to invasive mechanical
ventilation
time to death for patients not on invasive mechanical ventalation at randomisa-
tion - mean (or median) time to death
identity of the recruiting physician for the patient - proportion of patients re-
cruited by a particular physician
patient’s age at recruitment - mean (or median) age
patient’s sex - proportion of patients who are females
Covid-19 onset date - run chart of onset dates
Covid-19 severity - proportion of patients with a certain level of severity

(k) Only 177 hospitals in the UK were involved in the study. Suppose the hospitals in
the study were systematically different in the care offered to COVID-19 patients
compared to other hospitals in the UK. This could be a possible source of study
error since this could result in the proportion of patients dying of Covid-19 within
28 days in the target population being different than the proportion of patients
dying of Covid-19 within 28 days in the study population.
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(l) Doctors could decide which patients to recruit. Patients needed to give their con-
sent, that is, they could decide whether to be part of the study or not. Therefore
the sample may not be a representative sample from the study population. For
example, doctors may not have referred their patients who were extremely ill.
This may result in the proportion who die within 28 days being lower in the
sample as compared to the proportion who die within 28 days in the study
population.

(m) If the hospital staff member who entered the data, incorrectly entered which
treatment the patient received (or whether or not they died within 28 days)
then this is an example of measurement error.

(n) It is important for the researchers to randomly assign the participants to the
two different groups. If the researchers were allowed to choose the groups they
might inadvertently assign the patients who are more ill to the treatment they
believe is better. A difference in deaths rates between the groups could not then
be attributed to just the treatment.

(o) The control group which is the group that received the standard care acts as a
baseline. It allows the researchers to determine the effectiveness of the aspirin
treatment over and above the standard care.

(p) An estimate, based on the sample, of the proportion of adults in the study
population who would die within 28 days if they received standard care only
is 17%. An estimate, based on the sample, of the proportion of adults in the
study population who would die within 28 days if they received standard care
plus aspirin is 17%.

(q) The limitation is that the study was conducted in the UK which has a universal
healthcare system and therefore the conclusions of the is study might not hold
in other countries with different healthcare systems.

3.3 (a) This study would best be described as an experimental study because the re-
searchers determined, using randomization, which participants were assigned to
which training groups.

(b) The Problem is to compare generalized cognitive improvement among people who
engage in brain training and those who do not, as well as to compare generalized
cognitive improvement between groups who engage in different types of brain
training activity.

(c) This is a causative problem as the researchers are interested in whether brain
training causes an improvement in generalized cognitive improvement.

(d) A suitable target population for this study would be healthy adults aged 18−60

living in the United Kingdom at the time of the study or healthy adults aged
18− 60 living in the European Union at the time of the study.
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(e) A suitable study population for this study would be viewers of the television
programme ‘Bang Goes the Theory’aged 18-60 at the time of the study.

(f) The sampling protocol consisted of inviting adults (aged 18+) viewers of the
BBC popular science programme ‘Bang Goes The Theory’to participate in a
six-week online study of brain training. The sample consisted of the participants
who registered for the study, completed both benchmarking assessments as well
as at least two full training sessions during the six-week period. The sample size
was 11, 430.

(g) A variate which was recorded is the group a participant was assigned to (exper-
imental group 1 or 2, or the control group) which is a categorical variate.
In the study, scores for four different tests (reasoning, verbal short-term mem-
ory, spatial working memory and paired-associates learning) were acquired at
baseline and after six weeks. A variate would be associated with each of the four
different tests and each time point (baseline and six weeks) for a total of eight
different variates. Each of these scores would be a discrete variate.
Scores were also recorded for the six training tasks the participants were asked to
complete three times a week over the six week period. A discrete variate would
be associated with the score for each of the 6× 3× 6 = 108 different tasks.

(h) The following are just four examples of attributes. There are many other exam-
ples.
One attribute is the difference between the mean score on the baseline test for
reasoning and the mean score after six weeks of training tasks of the type used
for group 1.
Another attribute is the difference between the mean score on the baseline test
for verbal short-term memory and the mean score after six weeks of training
tasks of the type used for group 2.
Another attribute is the difference between the mean score on the baseline test
for spatial working memory and the mean score after six weeks of training tasks
of the type used for the control group.
Another attribute is the standard deviation in scores on the baseline test for
reasoning.

(i) Consider the attribute which is the mean score on the benchmark test for reason-
ing. Since the study population consisted of viewers of the television programme,
the fact that they watched this programme could mean that their reasoning abil-
ity is different than the adults in the target population. This could be a possible
source of study error since this could result in the average score on the benchmark
test for reasoning for the viewers of the television programme to be different than
the average score on the benchmark test for reasoning for adults in the target
population.

(j) Consider the attribute which is the difference between the mean score on the
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baseline test for verbal short-term memory and the mean score after six weeks
of training tasks of the type used for group 2. The adults who volunteered to
participate in the study were motivated to complete all the tests and training,
they may be systematically different than the adults in the study population
in terms of their ability to improve their short term memory. This could be a
possible source of study error since this could result in the mean score on the
baseline test for verbal short-term memory and the mean score after six weeks
of training tasks of the type used for group 2 for the participants to be different
from the mean score on the baseline test for verbal short-term memory and the
mean score after six weeks of training tasks of the type used for group 2 for
adults in the study population.

(k) A possible source of measurement error is that participants may cheat on the
assessments (for example, by asking a friend for help). This could mean that their
scores are not an accurate reflection of what the researchers wish to measure,
which is their scores without any outside help.

(l) Randomization ensures that any difference in cognitive improvement is due to the
group assignment, and not due to other potential confounders (e.g., if individuals
could choose which type of brain training exercise to do, we may find individuals
who prefer one type of exercise may be more/less likely to then benefit from that
exercise).

(m) The control group allows the researchers to compare those who engaged in brain
training exercises with those who did not.

(n) The most important limitation is that the participants in this study were volun-
teers who were keen enough to do all the testing and training exercises. Therefore
the conclusions of this study may not apply to the study population.
Another important limitation is that the study population consisted of adults
who watched the television programme. Therefore the conclusions of this study
may not apply to the target population.

3.4 (a) This study would best be described as an experimental study since the re-
searchers are in control of which schools received the regular curriculum and
which schools are using the JUMP program.

(b) The Problem is to compare the performance in math of students at Ontario
schools using the current provincial curriculum as compared to the performance
in math of students at Ontario schools using the JUMP math program.

(c) This is a causative problem since the researcher are interested in whether the
JUMP program causes better student performance in math.

(d) The target population is all elementary students in Ontario public schools at
the time of the study or all elementary students in Ontario public schools at the
time of the study and into the future.
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(e) The study population is all Ontario elementary students in Grades 2 and 5 in
public schools at the time the study.

(f) The sampling protocol is to select the schools in one school board in Ontario
and conduct the study using the students in those schools who were in Grades
2 and 5 at the time the study began. The researchers did not indicate how this
school board was chosen.

(g) One variate is whether a student receives the standard curriculum or the standard
curriculum plus the JUMP program which is a categorical study.
Another variate is the score on a classroom test used to study the impact of the
two programs on student learning. This variate is a discrete variate since scores
only take on a finite number of countable values.
Another variate is the score on a lab test used to study the impact of the two
programs on student learning. This is a discrete variate since scores only take
on a finite number of countable values.

(h) For the variate which indicates what program the student received, an attribute
would be the proportion of student who receive the standard circulum.
For the variate which is the score on a classroom test, an attribute would be the
mean score on the test or the difference between the mean score on a classroom
test and the mean score on the same classroom test after using the JUMP pro-
gram.
For the variate which is the score on a lab test, an attribute would be the mean
score on the test or the difference between the mean score on a lab test and the
mean score on the same lab test after using the JUMP program.

(i) A possible source of study error is that the ability of students in Grades 2 and 5
to learn math skills might be different than students in other grades and therefore
there might be a systematic difference in the mean scores on the classroom tests
for the different grades.

(j) A possible source of sample error is that the schools in the chosen school board
may not be representative of all the elementary schools in Ontario. For example,
the schools in the chosen board may have larger class sizes compared to other
schools. Student in larger classes may not receive as much help to improve their
math skills as students in smaller classes. Another example is that the chosen
school board might be in a low income area of a city. Students from low income
families may respond differently to changes in the Math curriculum as compared
to students from middle class families. These sources of sample may cause a
systematic difference in mean scores on a classroom test between the sample and
study population.

(k) The most serious limitation to this study is that only schools in one school board
in Toronto will be used in the sample so the conclusions may be subject to both
study error and sample error as described above.
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3.5 (a) This study would best be described as an experimental study because the re-
searchers controlled, using randomization, which students were assigned to the
racing-type game and which students were assigned to the game of solitaire.

(b) The Problem is to determine whether playing racing games makes players more
likely to take risks in a simulated driving test.

(c) This is a causative type Problem because the researchers were interested in
whether playing racing games as compared to playing a game like solitaire caused
players to take more risks in the driving test.

(d) A suitable target population for this study is young adults living in China at the
time of the study OR students attending university in China at the time of the
study.

(e) A suitable study population for this study is students attending Xi’an Jiaotong
University at the time of the study.

(f) From the article it appears that the researchers recruited volunteers for the study.
The article does not indicate how these volunteers were obtained.

(g) One variate is whether the student played the racing-type driving game or the
game of solitaire. This is a categorical variate.
A different variate would be associated with each of the 24 “risky”videotaped
road-traffi c situations on a computer screen. Each variate would be how long,
in seconds, the student waited to hit the “stop”key in the Vienna Risk-Taking
Test for a given road-traffi c situation viewed. Each of these 24 variates is a
continuous variate.

(h) An attribute can be associated with each of the 24 variates given in (g). Each
attribute would be the mean difference in the time to hit the “stop”key in the
Vienna Risk-Taking Test between adults who play racing games compared to
adults who play neutral games for each of the 24 road-traffi c situations.

(i) Young adults living in China (the target population) might be systematically
different than the students attending university in China at the time of the study
(the study population) since students who attend university are more educated
and more intelligent. This could be a possible source of study error since this
could result in differences in the means for the different road-traffi c situations
between the target population and the study population.

(j) The sample consisted of volunteers. The sample was not a random sample of
students from the Xi’an Jiaotong University. Students who volunteer for such
studies may be higher risk takers on average as compared to non-volunteers who
might be more conservative. This could be a possible source of study error
since this could result in differences in the means for the different road-traffi c
situations between the study population and the sample.
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(k) An estimate based on the data of the mean difference in the time to hit the “stop”
key in the Vienna Risk-Taking Test between young adults who play racing games
compared to young adults who play neutral games in the study population is
12− 10 = 2 seconds.

3.6 (a) This study would best be described as an observational study because the re-
searchers did not attempt to change or control any of the variates for the sampled
units and the population/process of interest is not finite.

(b) The Problem is to examine the association between coffee consumption and the
risk of mortality (death) in a middle-aged Mediterranean cohort.

(c) This problem would best be described as a descriptive problem. It does appear
that the researchers were interested in a causative problem since they wanted to
know how coffee consumption was related to mortality. However since this is an
observational study in which coffee consumption was not controlled by the re-
searchers, there could be many other explanations for the association which was
observed. Note that the title of the article “Higher coffee consumption as-
sociated with lower risk of early death”makes it clear that the researchers
knew that a causal relationship could not be concluded in such a study.

(d) Since this study recruited new participants to the study every year since 1999 it
would be best to define a target process. A suitable target process for this study
is the set of adults living in a Mediterranean country when the study began and
into the future.

(e) A suitable study process for this study is the set of Spanish university graduates
when the study began and into the future.

(f) Another variate was whether the person had died during the follow-up period.
This is a categorical variate.
Another variate is the number of cups of coffee consumed per day. It is not clear
how this variate was collected. If the question was how many cups of coffee do
you drink a day on average then this would be a discrete variate. If the question
(for example) was how many cups of coffee do you drink a day on average: 0,
1− 2, 3− 4, > 4, then this would be a categorical variate.

(g) The attributes are the mortality rates among middle-aged people living in the
Midterranean for the different levels of coffee consumption.

(h) There were only Spanish university graduates in the study process. University
graduates may have different coffee consumption habits on average and they
may also have better overall health habits. This might be a possible source of
error since it could result in a lower mortality for people in the study process as
compared to the mortality for people in the target process which included people
who are not university graduates.
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(i) Consider the variate which is the number of cups of coffee consumed per day.
This variate seems only to have been measured on entering the study. If the
person suddenly gave up drinking coffee or started drinking coffee soon after
entry into the study then coffee consumption would not be accurately measured.
It would also be easy for a person to over or understate the number of cups they
drink per day.
Consider the variate which is whether the person died during the follow-up pe-
riod. Information on mortality was obtained from study participants and their
families, postal authorities, and the National Death Index. It is possible that
whether or not a person has died was not recorded correctly.

(j) The purpose of the study was to examine the association between coffee con-
sumption and the risk of mortality (death) in a middle-aged Mediterranean co-
hort. However since there were only Spanish university graduates in the study
the conclusions are limited to this study process. Also coffee consumption was
only measured at entry into the study and did not take into account that the
participants could have changed their coffee drinking habits after entry into the
study.

(k) It is not a good idea to make a decision about whether or not to start drinking
four cups of coffee a day based on just one study particularly when the study
is observational. The conclusion was “Our findings suggest that drinking four
cups of coffee each day can be part of a healthy diet in healthy people.” It is
not clear from this study that drinking coffee is actually improving a person’s
health. As well we are all living in North America, not the Mediterranean, so
the conclusion does not really apply to us.

3.7 (a) The purpose of the study was to study whether live music, played or sung, was
beneficial to premature babies in terms of helping to slow their heartbeats, calm
their breathing, improve their sucking behaviors (important for feeding), aid
their sleep and promote their states of quiet alertness.

(b) This is a causative Problem because the researchers were interested in whether
live music could cause beneficial results to premature babies.

(c) A suitable target population for this study would be premature infants in New
York state (or the United States).

(d) A suitable study population for this study could be premature infants who sat-
isfied the criteria (aged ≤ 32 weeks with respiratory distress syndrome, clinical
sepsis, and/or SGA) between January 2011 and December 2012 in the 11 hospi-
tals who were given approval by their review boards.

(e) There is no information in the article on how the babies were selected from the
11 hospitals. Presumably the parents of the babies needed to give their consent
for their baby to be in the study. It is unclear whether the babies in the sample
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were in fact all the babies whose parents gave their consent in the 11 approved
hospitals during the two year study period.

(f) The sample consists of the 272 premature babies who participated in the study.
The sample size is 272.

(g) The study population only consisted of premature infants from 11 hospitals in
New York state at the time of the study. It might be that premature infants
at other hospitals in New York state (or the United States) are systematically
different from the premature infants at these 11 hospitals with respect to the
attributes discussed in the solution to Chapter 1, Problem 26.

(h) No information was given on how these premature babies were selected from the
study population. It could be that some parents of premature babies refused
to participate in the study. The premature babies of the parents who refused
to participate may be systematically different from the premature babies of the
parents who agreed to participate with respect to the attributes of interest.

(i) Respiratory rate (number of breaths per minute) and heart rate (heartbeats per
minute) would presumably be measured by an experienced nurse or technician.
The skill and reliability of the nurse or technician are possible sources of mea-
surement error. An unskilled nurse or technician could take measurements which
are not the true values.
Oxygen saturation would probably be measured using a blood sample and the
value determined in a lab. The skill of the lab technicians and the reliability of
the equipment used are possible sources of measurement error. For example, a
device for determining oxygen concentration may be badly calibrated and may
always underdetermine the oxygen saturation.
Sucking pattern (active/medium/slow/none) would need to be determined by a
technician trained to be able to detect the differences between these levels. The
skill of the technician is a possible source of measurement error.

(j) The most serious limitation is that this study only involved the 11 hospitals
whose boards gave approval to participate in the study. It is possible that these
11 hospitals are systematically different with respect to the attributes of interest
as compared to the other hospitals in New York state. It would be wrong to
conclude that the results of this study apply to all premature babies in New York
state or the United States.
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SOLUTIONS TO CHAPTER 4
PROBLEMS

4.1 (b) For samples of size n = 30 the histogram of simulated means should be centred
very close to µ = 2.326, the variability of the sample means should be smaller
compared to the variability for samples of size n = 15 since sd

(
Ȳ
)
≈ σ/

√
n and

the histogram should be more symmetric. The estimate of P
(∣∣Ȳ − 2.326

∣∣ ≤ 0.5
)

should increase since P
(∣∣Ȳ − 2.326

∣∣ ≤ 0.5
)
increases as n increases.

(c) Since E
(
Ȳ
)

= µ, the mean of the original population will affect the location of
the center of the histogram of simulated means.
Since sd

(
Ȳ
)
≈ σ/

√
n, the standard deviation of the original population will

affect the spread of the histogram. Larger values of σ will result in histograms
with more spread.
From the Central Limit Theorem we know that if the original population is very
symmetric then the distribution of Ȳ approaches a Normal distribution more
rapidly as n increases as compared to the case in which the original distribution
is very non-symmetric. Therefore if the original distribution is reasonably sym-
metric then the histogram will be very symmetric even if the sample size n is not
large. If the original distribution is not symmetric then you would not expect
the histogram to be reasonably symmetric unless n is large.

(d) Since sd
(
Ȳ
)
≈ σ/

√
n, the spread of the histogram will be affected by the sample

size n. Larger sample sizes will result in histograms which are more concentrated
around the mean µ which intuitively makes sense.
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4.4 From Chapter 2, Problem 4 we have

R (θ) =

[(
θ

0.5

)(
1− θ
0.5

)]200

= [4θ (1− θ)]200 for 0 ≤ θ ≤ 1

The 15% likelihood interval is [0.45, 0.55] which can be obtained from the graph of
R (θ) given in Figure 4.1 or by using the R commands

uniroot(function(x)((4*x*(1-x))^200-0.15),lower=0.42,upper=0.46)$root

uniroot(function(x)((4*x*(1-x))^200-0.15),lower=0.52,upper=0.56)$root
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Figure 4.1: Relative likelihood function for fracture data
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4.5 From Chapter 2, Problem 6 we have

R (θ) =

[
θ̂

θ
e(1−θ̂/θ)

]n
for θ > 0

For n = 20 and θ̂ = 3.6 the 15% likelihood interval is [2.40, 5.76]. For n = 60 and
θ̂ = 3.6 the 15% likelihood interval is [2.83, 4.68]. These intervals can be obtained ap-
proximately from the graphs of R (θ) given in Figure 4.2 or by using the R commands

RLF<-function(x,that,n) {exp(n*log(that/x)+n*(1-that/x))}

uniroot(function(x) (RLF(x,3.6,20)-0.15),lower=1,upper=3)$root

uniroot(function(x) (RLF(x,3.6,20)-0.15),lower=5,upper=6)$root

uniroot(function(x) (RLF(x,3.6,60)-0.15),lower=2,upper=3)$root

uniroot(function(x) (RLF(x,3.6,60)-0.15),lower=4,upper=5)$root

The width of the likelihood interval for n = 60 is narrower than the interval for
n = 20. This is expected since, as the same size increases, we would expect to have
more information about the unknown parameter θ. More information would generally
result in a narrower interval of plausible values for θ.

Figure 4.2: Relative likelihood functions for Problem 5
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4.6 From Chapter 2, Problem 8 we have

r (θ) = n log

(
θ + 1

θ̂ + 1

)
+ n

(
θ̂ − θ
θ̂ + 1

)
for θ > −1

For n = 15 and θ̂ = −0.5652 the 15% likelihood interval is [−0.75,−0.31]. For n = 45

and θ̂ = −0.5652 the 15% likelihood interval is [−0.68,−0.43]. These intervals can be
obtained approximately from the graphs of r (θ) given in Figure 4.3 or by using the
R commands

rlf<-function(x,that,n) {n*log((x+1)/(that+1))+n*(that-x)/(that+1)}

lg15<-log(0.15)

uniroot(function(x) (rlf(x,-0.5652,15)-lg15),lower=-0.8,upper=-0.6)$root

uniroot(function(x) (rlf(x,-0.5652,15)-lg15),lower=-0.6,upper=-0.2)$root

uniroot(function(x) (rlf(x,-0.5652,45)-lg15),lower=-0.8,upper=-0.6)$root

uniroot(function(x) (rlf(x,-0.5652,45)-lg15),lower=-0.6,upper=-0.2)$root

The width of the likelihood interval for n = 45 is narrower than the interval for n = 15.
This is expected since, as the same size increases, we would expect to have more in-
formation about the unknown parameter θ. More information would generally result
in a narrower interval of plausible values for θ.

Figure 4.3: Log relative likelihood functions for Problem 6
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4.7 (a) For the data n1 = 16, n2 = 16 and n3 = 18, α̂ = 0.28 and

R (α) =
(1 + α)32 (1− α)18

(1 + 0.28)32 (1− 0.28)18 for 0 ≤ α ≤< 1

Looking at Figure 4.4 we can see that R(0) > 0.1 and since α > 0 the lower
endpoint of the 10% likelihood interval is 0. We can also see that R(α) = 0.1

corresponds to α between 0.5 to 0.6. We use the R command
uniroot(function(x)(((1+x)/1.28)^32*((1-x)/0.72)^18-0.1),

lower=0.5,upper=0.6)$root

to obtain the answer 0.55. Therefore the 10% likelihood interval is [0, 0.55]. Since
the 10% likelihood interval is very wide compared to the set of possible values,
α is not very well determined by these data.
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0
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0.8

1

α

R(α)

Figure 4.4: Relative likelihood functions for Twin Data

(b) For the data for which 17 identical pairs were found, α̂ = 17/50 = 0.34 and the
relative likelihood function is

R (α) =
α17 (1− α)33

(0.34)17 (1− 0.34)33 for 0 ≤ α ≤ 1

We use the R commands
uniroot(function(x)((x/0.34)^17*((1-x)/0.66)^33-0.1),

lower=0,upper=0.3)$root

uniroot(function(x)((x/0.34)^17*((1-x)/0.66)^33-0.1),

lower=0.4,upper=0.6)$root

to obtain the 10% likelihood interval [0.21, 0.49]. This interval is much narrower
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than the interval in (a) which indicates that α is more accurately determined by
the second data set.

4.8 From Chapter 2, Problem 12 (d) we have

L (θ) = θ16 (1− θ)66 for 0 ≤ θ ≤ 1

2

θ̂ =
16

82
=

8

41

and

R (θ) =
θ16 (1− θ)66

(8/41)16 (33/41)66 for 0 ≤ θ ≤ 1

2

A graph of R (θ) is given in Figure 4.5.

The 15% likelihood interval is [0.12, 0.29] which can be obtained from the graph of
R (θ) or by using the R commands

uniroot(function(x)((41*x/8)^16*(41*(1-x)/33)^66-0.15),

lower=0.1,upper=0.15)$root

uniroot(function(x)((41*x/8)^16*(41*(1-x)/33)^66-0.15),

lower=0.2,upper=0.3)$root
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Figure 4.5: Relative likelihood function for size of family data
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4.9 (a) The probability a group tests negative is p = (1 − θ)k. The probability that y
out of n groups test negative is(

n

y

)
py(1− p)n−y for y = 0, 1, ..., n

We are assuming that the nk people represent independent trials and that θ does
not vary across subpopulations of the population of interest.

(b) Since L (p) = py(1 − p)n−y is the usual Binomial likelihood we know p̂ = y/n.
Solving p = (1 − θ)k for θ we obtain θ = 1 − p1/k. Therefore by the Invariance
Property of maximum likelihood estimates, the maximum likelihood estimate of
θ is

θ̂ = 1− (p̂)1/k = 1− (y/n)1/k

(c) For n = 100, k = 10 and y = 89 we have p̂ = 89/100 = 0.89 and
θ̂ = 1− (89/100)1/10 = 0.0116.
A 10% likelihood interval for p is found by using the R commands
uniroot(function(x)((x/0.89)^89*((1-x)/0.11)^11-0.1),

lower=0.8,upper=0.9)$root

uniroot(function(x)((x/0.89)^89*((1-x)/0.11)^11-0.1),

lower=0.9,upper=0.99)$root

which gives the interval [0.8113, 0.9451] for p.
The 10% likelihood interval for θ is[

1− (0.9451)1/10, 1− (0.8113)1/10
]

= [0.0056, 0.0207]

4.10 (a) From Example 2.2.2 the likelihood function for Poisson data is

L (θ) = θnȳe−nθ for θ > 0

with corresponding maximum likelihood estimate θ̂ = ȳ. For Company A, n = 12

and θ̂ = 20 and the relative likelihood function is

R (θ) =
θnȳe−nθ

ȳnȳe−nȳ
for θ > 0

See Figure 4.6 for a graph of the relative likelihood function (graph on the right).

(b) For Company B, n = 12 and θ̂ = 11.67. See Figure 4.6 for a graph of the relative
likelihood function (graph on the left).

(c) The 15% likelihood interval for Company A is: [17.59, 22.62] and the 15% likeli-
hood interval for Company B is: [9.84, 13.71]. It is clear from these approximate
95% confidence intervals that the mean number of service calls for Company A is
much larger than for Company B which implies the decision to go with Company
B is a good one.
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Figure 4.6: Relative Likelihood Functions for Company A and Company B Photocopiers

(d) The assumptions of the Poisson process (individuality, independence and homo-
geneity) would need to hold.

4.11 (a) If n = 1000 and θ = 0.5 then

P
(
−0.03 ≤ θ̃ − θ ≤ 0.03

)
= P

 −0.03√
(0.5)(0.5)

1000

≤
Y

1000 − 0.5√
(0.5)(0.5)

1000

≤ 0.03√
(0.5)(0.5)

1000


= P (−1.897367 ≤ Z ≤ 1.897367)

= 2P (Z ≤ 1.897367)− 1 where Z ∼ N(0, 1)

= 2 ∗ pnorm (1.897367)− 1 = 0.9422205 using R

(b)

P
(
−0.03 ≤ θ̃ − θ ≤ 0.03

)
= P

(
−0.03 ≤ Y

n
− 0.5 ≤ 0.03

)

= P

 −0.03√
(0.5)(0.5)

n

≤
Y
n − 0.5√
(0.5)(0.5)

n

≤ 0.03√
(0.5)(0.5)

n


≈ P

(
−0.06

√
n ≤ Z ≤ 0.06

√
n
)

where Z ∼ N(0, 1). Since P (−1.96 ≤ Z ≤ 1.96) = 0.95, we need 0.06
√
n ≥ 1.96

or n ≥ (1.96/0.06)2 = 1067.1. Therefore n should be at least 1068.
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(c)

P
(
−0.03 ≤ θ̃ − θ ≤ 0.03

)
= P

(
−0.03 ≤ Y

n
− θ ≤ 0.03

)

= P

 −0.03√
θ(1−θ)
n

≤
Y
n − θ√
θ(1−θ)
n

≤ 0.03√
θ(1−θ)
n


≈ P

(
− 0.03

√
n√

θ (1− θ)
≤ Z ≤ 0.03

√
n√

θ (1− θ)

)
where Z ∼ N(0, 1). Since P (−1.96 ≤ Z ≤ 1.96) = 0.95, we need

0.03
√
n√

θ (1− θ)
≥ 1.96

or

n ≥
(

1.96

0.03

)2

θ (1− θ)

Since θ is unknown we take θ = 0.5 so the inequality is true for all 0 < θ < 1.
Thus

n ≥
(

1.96

0.03

)2

(0.5)2 = 1067.1

and n should be at least 1068.

4.13 (a) Suppose the experiment which was used to estimate µ was conducted a large
number of times and each time a 95% confidence interval for µ was constructed
using the observed data. Then, approximately 95% of these constructed intervals
would contain the true, but unknown value of µ. Since we only have one interval
[42.8, 47.8], we do not know whether it contains the true value of µ or not.
We can only say that we are 95% confident that the given interval [42.8, 47.8]

contains the true value of µ since we are told it is a 95% confidence interval.
In other words, we hope we were one of the “lucky” 95% who constructed an
interval containing the true value of µ. Warning: P (µ ∈ [42.8, 47.8]) = 0.95 is
an incorrect statement.

(b) An approximate 95% confidence interval for the proportion of Canadians whose
mobile phone is a smartphone is

θ̂ ± 1.96

√
θ̂(1− θ̂)

n
= 0.45± 1.96

√
0.45(0.55)

1000
= 0.45± 0.03083498

= [0.419, 0.481]

(c) We need n such that

n ≥
(

1.96

0.02

)2

(0.5)2 = 2401

A sample size of 2401 or larger should be used.
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4.14 (a) If Y is the number who support this information then Y ∼ Binomial(n, θ). An
approximate 95% confidence interval is given by

0.7± 1.96

√
0.7(0.3)

200
= 0.7± 0.06351

= [0.6365, 0.7635]

(b) The Binomial model assumes that the 200 people represent 200 independent
trials. If 100 of the people interviewed were 50 married couples then the two
people in a couple are probably not independent with respect to their views.

4.15 Let Y = number of women who tested positive. Assume that model Y ∼ Binomial(n, θ).
Since

P (−2.5758 ≤ Z ≤ 2.5758) = 2P (Z ≤ 2.5758)− 1 = 2 (0.995)− 1 = 0.99

an approximate 99% confidence interval is given by

θ̂ ± 2.58

√
θ̂(1− θ̂)

n

=
64

29000
± 2.5758

√
64

29000(28936
29000)

29000

= 0.002206897± 0.000709781

= [0.0015, 0.0029]

The Binomial model assumes that the 29, 000 women represented 29, 000 independent
trials and that the probability that a randomly chosen women is HIV positive is equal
to θ. The women may not represent independent trials and the probability that
a randomly chosen women is HIV positive may be higher among certain high risk
women such as women who are intravenous drug users.

4.16 (a) Since

0.95 ≈ P

(
−1.96 ≤ Ȳ − θ√

Ȳ /n
≤ 1.96

)

= P

(
Ȳ − 1.96

√
Ȳ /n ≤ θ ≤ Ȳ + 1.96

√
Ȳ /n

)

therefore the interval
[
ȳ − 1.96

√
ȳ/n, ȳ + 1.96

√
ȳ/n

]
is an approximate 95%

confidence interval for θ.
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(b) An approximate 95% confidence interval for θ in the data in Chapter 2, Problem
10 is [

1669

696
− 1.96

√(
1669

696

)
/696,

1669

696
+ 1.96

√(
1669

696

)
/696

]
= [2.282942, 2.513035]

(c) A 15% likelihood interval for θ obtained using the R commands
n<-696

t<-1669/696

uniroot(function(x) (exp(n*t*log(x/t)+n*(t-x))-0.15),

lower=2.2,upper=2.4)$root

uniroot(function(x) (exp(n*t*log(x/t)+n*(t-x))-0.15),

lower=2.4,upper=2.6)$root

is
[2.285465, 2.514146]

The intervals are very similar since the sample size n = 696 is very large.

4.17 For Company A the approximate 95% confidence interval is [17.5, 22.5] and for Com-
pany B the approximate 95% confidence interval is [9.73, 13.60]. These intervals are
similar but not identical to the intervals in (c) since n = 12 is small. The intervals
would be more similar for a larger value of n.

4.18 (a) Since

E
(
Y k
)

=

∞∫
0

yk
y

θ2 e
−y/θdy =

∞∫
0

yk+1

θ2 e−y/θdy let x = y/θ

=
1

θ2

∞∫
0

(xθ)k+1 e−xθdx = θk
∞∫

0

xk+1e−xdx = θkΓ (k + 2)

therefore

E (Y ) = θΓ (3) = 2θ, E
(
Y 2
)

= θ2Γ (4) = 6θ2

V ar (Y ) = E
(
Y 2
)
− [E (Y )]2 = 6θ2 − (2θ)2 = 2θ2

as required.

(b) The likelihood function is

L (θ) =
n∏
i=1

yi

θ2 e
−yi/θ =

(
n∏
i=1

yi

)
θ−2n exp

(
−1

θ

n∑
i=1

yi

)
for θ > 0

or more simply

L (θ) = θ−2n exp

(
−1

θ

n∑
i=1

yi

)
for θ > 0
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The log likelihood function is

l (θ) = −2n log θ − 1

θ

n∑
i=1

yi for θ > 0

and

l′ (θ) = −2n

θ
+

1

θ2

n∑
i=1

yi =
1

θ2

(
n∑
i=1

yi − 2nθ

)
for θ > 0

Now l′ (θ) = 0 if

θ =
1

2n

n∑
i=1

yi =
1

2
ȳ

(Note a First Derivative Test could be used to confirm that l (θ) has an absolute
maximum at θ = ȳ/2.) The maximum likelihood estimate of θ is θ̂ = ȳ

2 .

(c)

E
(
Ȳ
)

= E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E (Yi) =
1

n

n∑
i=1

2θ =
1

n
(2nθ) = 2θ

and

V ar
(
Ȳ
)

= V ar

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

V ar (Yi) =
1

n2

n∑
i=1

2θ2 =
1

n2

(
2nθ2

)
=

2θ2

n

(d) Since Y1, Y2, . . . , Yn are independent and identically distributed random variables
then by the Central Limit Theorem

Ȳ − 2θ

θ
√

2/n
has approximately a G (0, 1) distribution

If Z ∼ N (0, 1)

P (−1.96 ≤ Z ≤ 1.96) = 0.95

Therefore

P

(
−1.96 ≤ Ȳ − 2θ

θ
√

2/n
≤ 1.96

)
≈ 0.95

(e) Since

0.95 ≈ P

(
−1.96 ≤ Ȳ − 2θ

θ
√

2/n
≤ 1.96

)
= P

(
Ȳ − 1.96θ

√
2/n ≤ 2θ ≤ Ȳ + 1.96θ

√
2/n

)
= P

(
Ȳ /2− 0.98θ

√
2/n ≤ θ ≤ Ȳ /2 + 0.98θ

√
2/n

)
an approximate 95% confidence interval for θ is[

θ̂ − 0.98θ̂
√

2/n, θ̂ + 0.98θ̂
√

2/n
]

where θ̂ = ȳ/2.



75

(f) For these data the maximum likelihood estimate of θ is

θ̂ =
ȳ

2
=

88.92/18

2
= 2.47

and the approximate 95% confidence interval for θ is

2.47± 0.98 (2.47)

√
2

18
= [1.66, 3.28]

4.19 (a)

L(θ) =
n∏
i=1

1

2
θ3t2i exp (−θti) =

(
1

2n

n∏
i=1

t2i

)
θ3n exp

(
−θ

n∑
i=1

ti

)
or more simply

L(θ) = θ3n exp

(
−θ

n∑
i=1

ti

)
for θ > 0

The log likelihood function is

l(θ) = 3n log θ − θ
n∑
i=1

ti
dl

dθ
=

3n

θ
−

n∑
i=1

ti

Solving l(θ) = 0, we obtain the maximum likelihood estimate

θ̂ =
3n
n∑
i=1

ti

The relative likelihood function is

R(θ) =
L(θ)

L(θ̂)
=

θ3n exp

(
−θ

n∑
i=1

ti

)
θ̂

3n
exp

(
−θ̂

n∑
i=1

ti

) for θ > 0

But
θ̂ =

3n
n∑
i=1

ti

so
n∑
i=1

ti =
3n

θ̂

Therefore

R(θ) =
θ3n exp

(
−θ 3n

θ̂

)
θ̂

3n
exp (−3n)

=

(
θ

θ̂

)3n

exp

[
3n

(
1− θ

θ̂

)]
for θ > 0
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Figure 4.7: Relative Likelihood for Light Bulb Data

(b) Since n = 20 and
20∑
i=1

ti = 996, therefore θ̂ = 3 (20) /996 = 0.06024. Reading from

the graph in Figure 4.7 or by solving R(θ) = 0.15 using the uniroot function in
R, we obtain the 15% likelihood interval [0.0463, 0.0768] which is an approximate
95% confidence interval for θ.

(c)

E (T ) =
1

2

∞∫
0

θ3t3e−θtdt =
1

2

∞∫
0

(θt)3e−(θt)dt

=
1

2θ

∞∫
0

x3e−xdx (by letting x = θt)

=
1

2θ
Γ(4) =

1

2θ
3! =

3

θ

and a 95% approximate confidence interval for E (T ) = 3/θ is[
3

0.0463
,

3

0.0768

]
= [39.1, 64.8]

(d)

p(θ) = P (T ≤ 50) =
θ3

2

50∫
0

t2e−θtdt

=
θ3

2

[
−2500

θ
e−50θ − 100

θ2 e
−50θ +

2

θ2

(
−1

θ
e−50θ +

1

θ

)]
= 1−

(
1250θ2 + 50θ + 1

)
e−50θ
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Since

p (0.0463) = 1−
[
1250 (0.0463)2 + 50 (0.0463) + 1

]
e−50(0.0463) = 0.408

and

p (0.0768) = 1−
[
1250 (0.0768)2 + 50 (0.0768) + 1

]
e−50(0.0768) = 0.738

the confidence intervals for p(θ) using the model is [0.408, 0.738].
The confidence interval for p using the Binomial model is

p̂± 1.96

√
p̂ (1− p̂)

n
=

11

20
± 1.96

√
(11/20) (9/20)

20
= 0.55± 0.218

= [0.332, 0.768]

The Binomial model involves fewer model assumptions but gives a less precise
(wider) interval.

4.20 (a)

(i) If X ∼ χ2 (10) then P (X ≤ 2.6) ≈ P (X ≤ 2.558) = 0.01 and
P (X > 16) ≈ 1− P (X ≤ 15.987) = 1− 0.9 = 0.1.

(ii) If X ∼ χ2 (4) then P (X > 15) ≈ 1− P (X ≤ 14.86) = 1− 0.995 = 0.005.

(iii) If X ∼ χ2 (40) then P (X ≤ 24.4) ≈ P (X ≤ 24.433) = 0.025 and
P (X ≤ 55.8) ≈ P (X ≤ 55.758) = 0.95.
If Y ∼ N (40, 80) then

P (Y ≤ 24.4) = P

(
Z ≤ 24.4− 40√

80

)
where Z ∼ N (0, 1)

= P (Z ≤ −1.74)

= 1− P (Z ≤ 1.74)

= 1− 0.95907

= 0.04093 ≈ 0.041

and

P (Y ≤ 55.8) = P

(
Z ≤ 55.8− 40√

80

)
where Z ∼ N (0, 1)

= P (Z ≤ 1.77)

= 0.96164 ≈ 0.96

If X ∼ χ2 (40) then the graph of the probability density function of X will
be fairly symmetric about the mean E (X) = 40 and very similar to the
graph of the probability density function of a N (40, 80) random variable.
We note that P (X ≤ 55.8) = 0.95 is close to P (Y ≤ 55.8) = 0.96 while
P (X ≤ 24.4) = 0.025 and P (Y ≤ 24.4) = 0.041 are not as close.
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(iv) If X ∼ χ2 (25) then solving P (X ≤ a) = 0.025 and P (X > b) = 0.025 gives
a = 13.120 and b = 40.646.

(v) If X ∼ χ2 (12) then solving P (X ≤ a) = 0.05 and P (X > b) = 0.05 gives
a = 5.226 and b = 21.026.

(b)

(i) P (X ≤ 2.6) = pchisq(2.6, 10) = 0.01621621,
P (X > 16) = 1− P (X ≤ 16) = 1− pchisq(16, 10) = 0.0996324.

(ii) P (X > 15) = 1− P (X ≤ 15) = 1− pchisq(15, 4) = 0.004701217.

(iii) P (X ≤ 24.4) = pchisq(24.4, 40) = 0.02469984 and
P (X ≤ 55.8) = pchisq(55.8, 40) = 0.950383.

(iv) a = qchisq(0.025, 25) = 13.11972 and b = qchisq(0.975, 25) = 40.64647

(v) a = qchisq(0.05, 12) = 5.226029 and b = qchisq(0.95, 12) = 21.02607

(c)

(i) If X ∼ χ2 (1) then

P (X ≤ 2) = P
(
|Z| ≤

√
2
)

where Z ∼ N (0, 1)

= 2P (Z ≤ 1.41)− 1

= 2(0.92073)− 1

= 0.84146

and

P (X > 1.4) = 1− P
(
|Z| ≤

√
1.4
)

where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 1.18)]

= 2(1− 0.88100)

= 0.23800

(ii) If X ∼ χ2 (2) = Exponential(2) then

P (X ≤ 2) = 1− e−2/2

= 1− e−1 ≈ 0.632

and

P (X > 3) = e−3/2

= e−1.5 ≈ 0.223

(d) If X ∼ G (3, 2) then
(
X−3

2

)2 ∼ χ2 (1). Since Yi ∼ Exponential (2), i = 1, 2, . . . , 5

independently and Exponential (2) is the same distribution as χ2 (2),therefore

W =
5∑
i=1

Yi +
(
X−3

2

)2 ∼ χ2 (10 + 1) or χ2 (11).
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(e) If Xi ∼ χ2 (i) , i = 1, 2, . . . , 10 independently then
10∑
i=1

Xi ∼ χ2

(
10∑
i=1

i

)
or χ2 (55).

4.21 (a)
∞∫
0

1

2
k
2 Γ
(
k
2

)y k2−1e−
y
2 dy =

1

Γ
(
k
2

)∞∫
0

(y
2

) k
2
−1
e−

y
2
dy

2
let x =

y

2

=
1

Γ
(
k
2

)∞∫
0

x
k
2
−1e−xdx

=
1

Γ
(
k
2

)Γ

(
k

2

)
since

∞∫
0

xα−1e−xdx = Γ (α)

= 1

(b) See Figure 4.8. As k increases the probability density function becomes more
symmetric about the line y = k.
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0.04

0.06
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f(y)

k=5

k=10

k=25

Figure 4.8: Chi-squared probability density functions for k = 5, 10, 25

(c)

M(t) = E
(
eY t
)

=
∞∫
0

1

2
k
2 Γ(k2 )

y
k
2
−1e−

y
2 eytdy

=
1

2
k
2 Γ(k2 )

∞∫
0

y
k
2
−1e−( 1

2
−t)ydy converges for t <

1

2

=
1

2
k
2 Γ(k2 )(1

2 − t)
k
2

∞∫
0

x
k
2
−1e−xdx by letting x =

(
1

2
− t
)
y

=

[
2
k
2 (

1

2
− t)

k
2

]−1

= (1− 2t)−
k
2 for t <

1

2
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Therefore

M
′
(0) = E (Y ) = −k

2
(1− 2t)−

k
2
−1(−2)|t=0 = k

M
′′
(0) = E

(
Y 2
)

= −k
2

[
−
(
k

2
+ 1

)]
(1− 2t)−

k
2
−2(−2×−2)|t=0 = k2 + 2k

V ar(Y ) = k2 + 2k − k2 = 2k

(d) Wi ∼ χ2 (ki) has moment generating function Mi(t) = (1 − 2t)−ki/2. Therefore

S =
n∑
i=1

Wi has moment generating function

Ms(t) =
n∏
i=1

Mi(t) = (1− 2t)
−

n∑
i=1

ki/2

which is the moment generating function of a χ2 distribution with degrees of

freedom equal to
n∑
i=1

ki. Therefore S ∼ χ2

(
n∑
i=1

ki

)
as required.

4.22 (a) The graph is given in Figure 4.9. As k increases the graphs become more and
more like the graph of the N (0, 1) probability density function and for k = 25

there is little difference between the t (25) probability density function and the
N (0, 1) probability density function.

t
3 2 1 0 1 2 3
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0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f(t;k)

k=1

k=5
k=25

Figure 4.9: Graphs of the t (k) pd.f. for k = 1, 5, 25 and the N (0, 1) p.d.f. (dashed line)
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(b)

d

dt
f (t; k) =

d

dt
ck

(
1 +

t2

k

)− k+1
2

= ck

(
−k + 1

2

)(
1 +

t2

k

)− k+1
2
−1

2t

k

= t · ck
(
−k + 1

k

)(
1 +

t2

k

)− k+1
2
−1

= 0 if t = 0

Since d
dtf (t; k) > 0 if t < 0 and d

dtf (t; k) < 0 if t > 0 then by the First Derivative
Test f (t; k) has a global maximum at t = 0.

(c)

E (T ) = E

 Z√
U
k

 = E (Z)E

 1√
U
k


since Z and U are independent random variables

= 0 since E (Z) = 0

(d)

(i) If T ∼ t(10) then P (T ≤ 0.88) = 0.8,

P (T ≤ −0.88) = P (T > 0.88) ≈ 1− P (T ≤ 0.8791) ≈ 1− 0.8 = 0.2

and

P (|T | ≤ 0.88) = P (−0.88 ≤ T ≤ 0.88) = P (T ≤ 0.88)− P (T ≤ −0.88)

= P (T ≤ 0.88)− [1− P (T ≤ 0.88)] = 2P (T ≤ 0.88)− 1

≈ 2P (T ≤ 0.8791)− 1 = 2 (0.8)− 1 = 0.6

(ii) If T ∼ t(17) then

P (|T | ≥ 2.90) = 2P (T ≥ 2.90) by symmetry

= 2 [1− P (T ≤ 2.90)] ≈ 2 [1− P (T ≤ 2.8982)] = 2 (1− 0.995) = 0.01

(iii) If T ∼ t(30) then

P (T ≤ −2.04) = P (T ≥ 2.04) = 1− P (T ≤ 2.04)

≈ 1− P (T ≤ 2.0423) = 1− 0.975 = 0.025

and if Z ∼ N (0, 1) then

P (Z ≤ −2.04) = 1− P (Z ≤ 2.04)

= 1− 0.97932 = 0.02068

and these values are close.
If T ∼ t(30) then P (T ≤ 0.26) ≈ P (T ≤ 0.2556) = 0.6 which is close to
P (Z ≤ 0.26) = 0.60257 if Z ∼ N(0, 1).
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(iv) If T ∼ t(18) then P (T ≤ 2.1009) = 0.975 so P (T ≥ 2.1009) = 0.025 and
by symmetry P (T ≤ −2.1009) = 0.025. Therefore a = −2.1009 and b =

2.1009.

(v) If T ∼ t(13) then P (T ≤ 1.7709) = 0.95 so P (T ≥ 1.7709) = 0.05 and by
symmetry P (T ≤ −1.7709) = 0.05. Therefore a = −1.7709 and b = 1.7709.

(e)

(i) P (T ≤ −0.88) =pt(−0.88, 10) = 0.1997567 and P (|T | ≤ 0.88) = 2P (T ≤
0.88)− 1 = 2×pt(0.88, 10)− 1 = 0.6004867

(ii) P (|T | ≥ 2.90) = 2P (T ≥ 2.90) = 2 [1− P (T ≤ 2.90)] = 2 [1− pt (2.90, 17)] =

0.009962573

(iii) P (T ≤ −2.04) = pt(−2.04, 30) = 0.02511979 and P (T ≤ 0.26) = pt(0.26, 30) =

0.60168

(iv) a = qt(0.025, 18) = −2.100922 and b = qt(0.975, 18) = 2.100922

(v) a = qt(0.05, 13) = −1.770933 and b = qt(0.95, 13) = 1.770933

4.23

lim
k→∞

f (t; k) = lim
k→∞

Γ
(
k+1

2

)
√
kπΓ

(
k
2

) (1 +
t2

k

)− k+1
2

= lim
k→∞

Γ
(
k+1

2

)
√
kπΓ

(
k
2

) (1 +
t2

k

)− k
2
(

1 +
t2

k

)− 1
2

=
1√
2π

exp

(
−1

2
t2
)

for t ∈ <

since

lim
k→∞

ck =
1√
2π

lim
k→∞

(
1 +

t2

k

)− 1
2

= 1

lim
k→∞

(
1 +

t2

k

)− k
2

= exp

(
−1

2
t2
)

since lim
y→∞

(
1 +

a

n

)bn
= eab

4.24 (a) Since

Wi = Yi − Ȳ = Yi −
1

n

n∑
i=1

Yi =

(
1− 1

n

)
Yi −

1

n

∑
j 6=i

Yj for i = 1, 2, . . . , n

therefore Wi is a linear combination of Y1, Y2, . . . , Yn and therefore a linear com-
bination of independent Normal random variables.
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(b)

E (Wi) = E
(
Yi − Ȳ

)
= E (Yi)− E

(
Ȳ
)

= µ− µ = 0 for i = 1, 2, . . . , n

Now Cov (Yi, Yj) = 0 if i 6= j (since the Y ′i s are independent random variables)
and Cov (Yi, Yj) = σ2 if i = j (since Cov (Yi, Yi) = V ar (Yi) = σ2). This implies

Cov
(
Yi, Ȳ

)
= Cov

(
Yi,

1

n

n∑
i=1

Yi

)
=

1

n
Cov

(
Yi,

n∑
i=1

Yi

)
=

1

n
Cov (Yi, Yi) =

1

n
V ar (Yi) =

σ2

n

Therefore

V ar (Wi) = V ar
(
Yi − Ȳ

)
= V ar (Yi) + V ar

(
Ȳ
)
− 2Cov

(
Yi, Ȳ

)
= σ2 +

σ2

n
− 2

(
σ2

n

)
= σ2

(
1− 1

n

)
(c)

Cov (Wi,Wj) = Cov
(
Yi − Ȳ , Yj − Ȳ

)
i 6= j

= Cov (Yi, Yj)− Cov
(
Yi, Ȳ

)
− Cov

(
Ȳ , Yj

)
+ Cov

(
Ȳ , Ȳ

)
= 0− σ2

n
− σ2

n
+ V ar

(
Ȳ
)

= −2σ2

n
+
σ2

n
= −σ

2

n

4.25 Since P (−a ≤ Z ≤ a) = p where Z ∼ G (0, 1) and

Ȳ − θ
Ȳ /
√
n
has approximately a G (0, 1) distribution.

then

p ≈ P

(
−a ≤ Ȳ − θ

Ȳ /
√
n
≤ a

)
= P

(
Ȳ − aȲ /

√
n ≤ θ ≤ Ȳ + aȲ /

√
n
)

and therefore ȳ ± aȳ/
√
n is an approximate 100p% confidence interval for θ.

4.26 (a) For these data ȳ = 1
30 (11400) = 380. An approximate 90% confidence interval

for θ is 380± (1.645) 380/
√

30 = [265.9, 494.1].

(b) From Example 2.3.2

L(θ) = θ−ne−nȳ/θ for θ > 0 and θ̂ = ȳ.
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Therefore

R (θ) =
L(θ)

L(θ̂)
=
L(θ)

L(ȳ)
=
θ−ne−nȳ/θ

(ȳ)−ne−n
=
( ȳ
θ

)n
en(1−ȳ/θ)

=
[ ȳ
θ
e(1−ȳ/θ)

]n
for θ > 0

For the given data n = 30 and θ̂ = 1
30 (11400) = 380 and

R (θ) =

[
380

θ
e(1−380/θ)

]30

for θ > 0

From the inverse Normal table

0.90 = P (|Z| ≤ 1.6449) where Z ∼ N (0, 1)

= P
(
W ≤ (1.6449)2

)
where W ∼ χ2 (1)

= P (W ≤ 2.7057)

Since (see Section 4.6) {θ : Λ (θ) ≤ 2.7057} =
{
θ : 2l(θ̂)− 2l (θ) ≤ 2.7057

}
is an

approximate 90% confidence interval. Therefore{
θ : 2l(θ̂)− 2l (θ) ≤ 2.7057

}
=

{
θ : R (θ) ≥ e−2.7057/2

}
= {θ : R (θ) ≥ 0.2585}

which implies that a 26% likelihood interval is an approximate 90% confidence
interval.
Using the uniroot function in R and

R (θ) =

[
380

θ
e(1−380/θ)

]30

for θ > 0

we obtain the interval as [285.5, 521.3]. Alternatively the likelihood interval can
be determined approximately from a graph of the relative likelihood function.
See Figure 4.10. The intervals [265.9, 494.1] and [285.5, 521.3] are not very close.
The reason for this is that the relative likelihood function is not symmetric about
θ̂.

(c) Since P (X ≤ m) = 1− e−m/θ = 0.5, therefore m = −θ log(0.5) = θ log 2 and the
confidence interval for m is [285.5 log 2, 521.3 log 2] = [197.9, 361.3] by using the
confidence interval for θ obtained in (b).

4.27 (a) Let F (y) = P (Y ≤ y) be the cumulative distribution function of Y . For w > 0,

G (w) = P (W ≤ w) = P

(
2Y

θ
≤ w

)
= P

(
Y ≤ θw

2

)
= F

(
θw

2

)
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Figure 4.10: Relative likelihood function for survival times for AIDS patients

The probability density function of W is

g (w) =
d

dw
G (w) =

d

dw
F

(
θw

2

)
= f

(
θw

2

)
d

dw

(
θw

2

)
=

1

θ
e−( θw2 )/θ

(
θ

2

)
=

1

2
e−

w
2 for w > 0

which is the probability density function of a χ2(2) random variable.

(b) Let Wi = 2Yi/θ, i = 1, 2, . . . , n independently. Then by part (a) Wi ∼ χ2(2),
i = 1, 2, . . . , n independently. Since the sum of n independent χ2(2) random

variables has a χ2 distribution with degrees of freedom equal to
n∑
i=1

2 = 2n,

therefore

U =
n∑
i=1

Wi =
n∑
i=1

2Yi
θ
∼ χ2(2n)

as required.

(c) Using the Chi-squared table find a and b such that P (U ≤ a) = 1−p
2 = P (U ≥ b)
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where U ∼ χ2 (2n). Since

p = P

(
a ≤

n∑
i=1

2Yi
θ
≤ b
)

= P

1

b
≤ θ

2
n∑
i=1

Yi

≤ 1

a



= P

2
n∑
i=1

Yi

b
≤ θ ≤

2
n∑
i=1

Yi

a


then a 100p% confidence interval for θ is given by2

n∑
i=1

yi

b
,

2
n∑
i=1

yi

a


(d) Since

P (U ≤ 43.19) =
1− 0.9

2
= 0.05 = P (U ≥ 79.08) where W ∼ χ2 (60)

a 90% confidence interval for θ[
2 (11400)

79.082
,

2 (11400)

43.188

]
= [288.3, 527.9]

which is very close to the approximate 90% likelihood-based confidence interval
[285.5, 521.3] but not close to the approximate confidence interval [265.9, 494.1]

based on the asymptotic Normal pivotal.

4.28 Since Yi ∼ G (µ, σ), i = 1, 2, . . . , n independently, therefore

Yi − µ
σ

∼ G (0, 1) for i = 1, 2, . . . , n independently

and (
Yi − µ
σ

)2

∼ χ2 (1) for i = 1, 2, . . . , n independently

since this distribution of the square of a G (0, 1) random variable is χ2 (1). Since the
sum of n independent χ2(1) random variables has a χ2 distribution with degrees of

freedom equal to
n∑
i=1

1 = n, therefore

U =
n∑
i=1

(
Yi − µ
σ

)2

∼ χ2 (n)
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Since U is a function of the data and the unknown parameter σ (µ is known) whose
distribution is completely known, therefore U is a pivotal quantity.

To construct a 100p% confidence interval for σ2 find values a and b such that

P (W ≤ a) =
1− p

2
= P (W ≥ b) where W ∼ χ2 (n)

Since

p = P

(
a ≤

n∑
i=1

(
Yi − µ
σ

)2

≤ b
)

= P


n∑
i=1

(Yi − µ)2

b
≤ σ2 ≤

n∑
i=1

(Yi − µ)2

a



= P


√√√√√ n∑

i=1
(Yi − µ)2

b
≤ σ ≤

√√√√√ n∑
i=1

(Yi − µ)2

a


a 100p% confidence interval for σ2 is given by

n∑
i=1

(yi − µ)2

b
,

n∑
i=1

(yi − µ)2

a


and a 100p% confidence interval for σ is given by

√√√√√ n∑
i=1

(yi − µ)2

b
,

√√√√√ n∑
i=1

(yi − µ)2

a


4.29 (a) Since the points in the qqplot in Figure 4.11 lie reasonably along a straight line

the Gaussian model seems reasonable for these data.

(b) A suitable study population for this study would be common octopi in the Ria de
Vigo. The parameter µ represents the mean weight in grams of common octopi
in the Ria de Vigo. The parameter σ represents the standard deviation of the
weights in grams of common octopi in the Ria de Vigo.

(c) Since P (T ≤ 2.1009) = (1 + 0.95) /2 = 0.975,

µ̂ = ȳ =
20340

19
= 1070.526 and s =

[
1

18
(884095)

]1/2

= 221.62
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Figure 4.11: Qqplot for octopus data

therefore a 95% confidence interval for µ is

1070.526± 2.1009 (221.62) /
√

19 = 1070.526± 106.817

= [963.709, 1177.343]

Since the value µ = 1100 grams is well within this interval then the researchers
could conclude that based on these data the octopi in the Ria de Vigo are
reasonably healthy based on their mean weight.

(d) Since P (W ≤ 9.391) = 0.05 = P (W ≥ 28.869) where W ∼ χ2 (18) a 90% confi-
dence interval for σ for the given data is[(

884095

28.869

)1/2

,

(
884095

9.391

)1/2
]

=
[
(306.24)1/2 , (941.42)1/2

]
= [175.00, 306.83]

4.30 (a) Qqplots of the weights for females and males separately are shown in Figures
4.12 and 4.13. In both cases the points lie reasonably along a straight line so it
is reasonable to assume a Normal model for each data set.

(b) Using R we obtain P (T ≤ 1.976013) = 0.975 where T ∼ t (149).
A 95% confidence interval for the mean weight of females is[

ȳf − 1.976013sf/
√

150, ȳf + 1.976013sf/
√

150
]

=
[
70.4432− (1.976013) (12.5092) /

√
150, 70.4432 + (1.976013) (12.5092) /

√
150
]

= [68.425, 72.461]
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Figure 4.12: Qqplot of female weights

A 95% confidence interval for the mean weight of males is[
ȳm − 1.976013sm/

√
150, ȳm + 1.976013sm/

√
150
]

=
[
82.5919− (1.976013) (12.8536) /

√
150, 82.5919 + (1.976013) (12.8536) /

√
150
]

= [80.518, 84.666]

We note that the interval for females and the interval for males have no values in
common. The mean weight for males is higher than the mean weight for females.

(c) To obtain confidence intervals for the standard deviations we note that the piv-
otal quantity (n− 1)S2/σ2 = 149S2/σ2 has a χ2 (149) distribution. Using R we
have P (W ≤ 117.098) = 0.025 = P (W ≥ 184.687) where W ∼ χ2 (149). A 95%

confidence interval given by[√
149s2

184.687
,

√
149s2

117.098

]

For the females we obtain[√
149 (156.4806)

184.687
,

√
149 (156.4806)

117.098

]
=

[√
126.2439,

√
199.1119

]
= [11.236, 14.111]
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Figure 4.13: Qqplot of male weights

For the males we obtain[√
149 (165.2162)

184.687
,

√
149 (165.2162)

117.098

]
=

[√
133.2915,

√
210.2274

]
= [11.545, 14.499]

These intervals are quite similar.

4.31 (a) A suitable study population consists of the detergent packages produced by this
particular detergent packaging machine. The parameter µ corresponds to the
mean weight of the detergent packages produced by this detergent packaging
machine. The parameter σ is the standard deviation of the weights of the deter-
gent packages produced by this detergent packaging machine.

(b) For these data

ȳ =
4803

16
= 300.1875

s2 =
1

15

[
1442369− 16 (300.1875)2

]
= 37.89583

s = 6.155959

Since P (T ≤ 2.1314) = (1 + 0.95)/2 = 0.975 where T ∼ t (15), a 95% confidence
interval for µ is

300.1875± (2.1314) (6.155959) /
√

16 = 300.1875± 3.2803

= [296.91, 303.47]
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Since P (W ≤ 6.262) = (1− 0.95) /2 = 0.025 and P (W ≤ 27.488) = (1 + 0.95) /2 =

0.975, a 95% confidence interval for σ[√
(15) (37.89583)

27.488
,

√
(15) (37.89583)

6.262

]
= [4.55, 9.53]

(c) Since P (T ≤ 2.1314) = (1 + 0.95)/2 = 0.975 where T ∼ t (15), a 95% prediction
interval for Y is

300.1875± (2.1314) (6.155959)

√
1 +

1

16
= 300.1875± 13.5249

= [286.7, 313.7]

4.32 (a) A suitable study population consists of the radon detectors sold at the Home
Depot in Waterloo. The parameter µ corresponds to the mean level of radon
in picocuries per liter detected by the detectors in the study population when
placed in a chamber for three days and exposed to 105 picocuries per liter. The
parameter σ is the standard deviation of these levels made by the radon detectors
in the study population.

(b) For the radon data

n = 12, ȳ = 104.1333 and s =

[
1

11

12∑
i=1

(yi − ȳ)2

]1/2

= 9.3974

From the t table, P (T ≤ 2.20) = (1 + 0.95)/2 = 0.975 where T ∼ t (11). A 95%

confidence interval for µ is[
104.1333− 2.20 (9.3974) /

√
12, 104.1333 + 2.20 (9.3974) /

√
12
]

= [104.1333− 5.9682, 104.1333 + 5.9682]

= [98.1652, 110.1015]

which does contain the value µ = 105.

(c) From the Chi-squared table, P (W ≤ 3.816) = 0.025 and P (W ≤ 21.920) =

(1 + 0.95)/2 = 0.975 where W ∼ χ2 (11). A 95% confidence interval for σ is[√
971.43

21.920
,

√
971.43

3.816

]
= [6.6571, 15.9551]

(d) Since the value µ = 105 is near the center of the 95% confidence interval for µ,
the data support the conclusion that the detector is accurate, that is, that the
detector is not giving biased readings. The confidence interval for σ, however,
indicates that the precision of the detectors might be of concern. The 95%
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confidence interval for σ suggests that the standard deviation could be as large
as 16 parts per billion. As a statistician you would need to rely on the expertise
of the researchers for a decision about whether the size of the σ is scientifically
significant and whether the precision of the detectors is too low. You would also
point out to the researchers that this evidence is based on a fairly small sample
of only 12 detectors.

(e) A 95% prediction interval for Y , the reading for the new radon detector exposed
to 105 picocuries per liter of radon over 3 days, is[

104.1333− 2.20 (9.3974)

(
1 +

1

12

)1/2

, 104.1333 + 2.20 (9.3974)

(
1 +

1

12

)1/2
]

= [104.1333− 21.5185, 104.1333 + 21.5185]

= [82.6148, 125.6519]

(f) For a 95% confidence interval for µ of width 2d we chose n ≈ (1.96σ/d)2. For this
problem d = 3. Since σ is unknown we estimate it using σ ≈ s = 9.4. Therefore
n ≈

(
1.96σ

3

)2 ≈ (1.96
3

)2
(9.4)2 = 37.7. Since 12 observations have already been

taken, the researchers should use at least 38− 12 = 26 more detectors. We note
that this calculation depends on an estimate of σ from a small sample (n = 12)
and the value 1.96 is from the Normal table rather than the t table in which
the values are greater than 2. Therefore the researchers should be advised to
use more than 26 additional detectors. Note that the upper limit of the 95%

confidence interval for σ is 16 and
(

2
3

)2
(16)2 = 113.8 which gives a rough upper

limit on the number of detectors to use.

4.33 (a) The combined likelihood function for µ is

L (µ) =
m∏
i=1

1√
2πσ1

exp

[
− 1

2σ2
1

(xi − µ)2

]
n∏
i=1

1√
2πσ2

exp

[
− 1

2σ2
2

(yi − µ)2

]
= (2π)−(n+m)/2 σ−m1 σ−n2 exp

{
− 1

2σ2
1

[
m∑
i=1

(xi − x̄)2 +m (x̄− µ)2

]}
× exp

{
− 1

2σ2
2

[
n∑
i=1

(yi − ȳ)2 + n (ȳ − µ)2

]}
or more simply ignoring constants

L (µ) = exp

[
−m
2σ2

1

(x̄− µ)2 − n

2σ2
2

(ȳ − µ)2

]
for µ ∈ <

since σ2
1 and σ

2
2 are known. The log likelihood function is

l (µ) = − m

2σ2
1

(x̄− µ)2 − n

2σ2
2

(ȳ − µ)2
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Solving

l′ (µ) =
m

σ2
1

(x̄− µ) +
n

σ2
2

(ȳ − µ) =

(
mσ2

2x̄+ nσ2
1ȳ
)
−
(
mσ2

2 + nσ2
1

)
µ

σ2
1σ

2
2

= 0

gives the maximum likelihood estimate for µ as

µ̂ =
mσ2

2x̄+ nσ2
1ȳ

mσ2
2 + nσ2

1

=

(
m/σ2

1

)
x̄+

(
n/σ2

2

)
ȳ

m/σ2
1 + n/σ2

2

=
w1x̄+ w2ȳ

w1 + w2

where w1 = m/σ2
1 and w2 = n/σ2

2. We first note that both x̄ and ȳ are both
estimates of µ and it makes sense to take a weighted average of the two estimates
to get a better estimate of µ. If the sample sizes n and m are not equal it makes
sense to weight the estimate that is a function of more observations. It also
makes sense that the mean of the observations that come from a distribution
with smaller variance is a better estimate of µ and should be given more weight.
By examining the weights w1 and w2 we can see that the estimate µ̂ does satisfies
both of these requirements.

(b) Since the observations in x̄ are observations from a distribution with larger vari-
ability then we don’t want to take just an average of x̄ and ȳ. We would choose
an estimate that weights ȳ more that x̄ since ȳ is a better estimate.

(c)

V ar(µ̃) = V ar

(
X + 4Y

5

)
=

1

25

[
V ar(X) + 16V ar(Ȳ )

]
=

1

25

[
1

10
+ 16

(
0.25

10

)]
= 0.02

and
√
V ar(µ̃) = 0.1414.

V ar

(
X + Y

2

)
=

1

4

[
V ar(X) + V ar(Y )

]
=

1

4

(
1

10
+

0.25

10

)
= 0.03125

and

√
V ar

(
X+Y

2

)
= 0.1768. We can clearly see now that µ̃ has a smaller

standard deviation than the estimator
(
X + Y

)
/2.
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SOLUTIONS TO CHAPTER 5
PROBLEMS

5.1 (a) The model Y ∼ Binomial(n, θ) is appropriate in the case in which the experiment
consists of a sequence of n independent trials with two outcomes on each trial
(Success and Failure) and P (Success) = θ is the same on each trial. In this
experiment the trials are the guesses. Since the deck is reschuffl ed each time it
seems reasonable to assume the guesses are independent. It also seems reasonable
to assume that the women’s ability to guess the number remains the same on
each trial. To test the hypothesis that the women is guessing at random the
appropriate null hypothesis would be H0 : θ = 1

5 = 0.2.

(b) For n = 20 and H0 : θ = 0.2, we have Y ∼ Binomial(20, 0.2) and
E (Y ) = 20 (0.2) = 4. We use the test statistic or discrepancy measure
D = |Y − E (Y ) | = |Y − 4| . The observed value of D is d = |8− 4| = 4. Then

p− value = P (D ≥ 4;H0) = P (|Y − 4| ≥ 4;H0)

= P (Y = 0) + P (Y ≥ 8)

=

(
20

0

)
(0.2)0 (0.8)20 +

20∑
y=8

(
20

y

)
(0.2)y (0.8)20−y

= 1−
7∑
y=1

(
20

y

)
(0.2)y (0.8)20−y = 0.04367 calculated using R

Since 0.01 < p − value = 0.04367 < 0.05 there is evidence based on the data
against H0 : θ = 0.2. These data suggest that the woman might have some
special guessing ability.

(c) For n = 100 and H0 : θ = 0.2, we have Y ∼ Binomial(100, 0.2),
E (Y ) = 100 (0.2) = 20 and V ar (Y ) = 100 (0.2) (0.8) = 16. We use the test
statistic or discrepancy measure D = |Y − E (Y ) | = |Y − 20| . The observed

95
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value of D is d = |32− 20| = 12. Then

p− value = P (D ≥ 12;H0) = P (|Y − 20| ≥ 12)

= P (Y ≤ 8) + P (Y ≥ 32)

=
8∑
y=0

(
100

y

)
(0.2)y (0.8)100−y +

100∑
y=32

(
100

y

)
(0.2)y (0.8)100−y

= 1−
31∑
y=9

(
100

y

)
(0.2)y (0.8)100−y = 0.004 calculated using R

or

p− value = P (D ≥ 12;H0) = P (|Y − 20| ≥ 12)

≈ P

(
|Z| ≥ 12√

16

)
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 3)] = 2 (1− 0.99865) = 0.0027

Since 0.001 < p − value < 0.01 there is strong evidence based on the data
against H0 : θ = 0.2. These data suggest that the woman has some special
guessing ability. Note that we would not conclude that it has been proven that
she does have special guessing ability!

5.2 Assuming H0 : θ = 10 is true Y ∼ Poisson(10). For the discrepancy measure D =

max(0, Y − 10)

p− value = P (D ≥ 15;H0) = P (max(0, Y − 10) ≥ 15;H0)

= P (Y ≥ 25) if Y ∼ Poisson (10)

= 1−
24∑
y=0

10ye−10

y!
= 0.000047 calculated using R

or

p− value = P (D ≥ 15;H0) = P (Y ≥ 25)

≈ P

(
Z ≥ 25− 10√

10

)
where Z ∼ N (0, 1)

= P (Z ≥ 4.74) ≈ 0

Since p−value ≈ 0 there is very strong evidence based on the data againstH0 : θ = 10.

5.3 (a) A qqplot of the data is given in Figure 5.1. Since the points in the qqplot lie
reasonably along a straight line it seems reasonable to assume a Normal model
for these data.
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Figure 5.1: Qqplot for Dioxin data

(b) A study population is a bit diffi cult to define in this problem. One possible
choice is to define the study population to be all measurements that could be
taken on a given day by this instrument on a standard solution of 45 parts per
billion dioxin. The parameter µ corresponds to the mean measurement made
by this instrument on the standard solution. The parameter σ corresponds to
the standard deviation of the measurements made by this instrument on the
standard solution.

(c) For these data

ȳ =
888.1

20
= 44.405 and s =

[
39545.03− 20 (44.405)2

19

]1/2

= 2.3946

To test H0 : µ = 45 we use the test statistic

D =

∣∣Ȳ − 45
∣∣

S/
√

20
where T =

Ȳ − 45

S/
√

20
∼ t (19)

The observed value of D is

d =
|44.405− 45|
2.3946/

√
20

= 1.11

and

p− value = P (D ≥ d;H0)

= P (|T | ≥ 1.11) where T ∼ t (19)

= 2 [1− P (T ≤ 1.11)]

= 0.2803 calculated using R
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Alternatively using the t table we have P (T ≤ 0.8610) = 0.8 and
P (T ≤ 1.3277) = 0.9 so

2 (1− 0.9) ≤ p− value ≤ 2 (1− 0.8)

or 0.2 ≤ p− value ≤ 0.4

In either case since the p − value is larger than 0.1 and we would conclude
that, based on the observed data, there is no evidence against the hypothesis
H0 : µ = 45. (Note: This does not imply the hypothesis is true!).

A 100p% confidence interval for µ based on the pivotal quantity

T =
Ȳ − 45

S/
√

20
∼ t (19)

is given by [
ȳ − as/

√
20, ȳ + as/

√
20
]

where P (T ≤ a) = (1 + p)/2. From the t table we have P (T ≤ 2.093) =

(1 + 0.95) /2 = 0.975. Therefore the 95% confidence interval for µ is[
ȳ − 2.093s/

√
20, ȳ + 2.093s/

√
20
]

= [43.28, 45.53]

Based on these data it would appear that the new instrument is working as it
should be since there was no evidence against H0 : µ = 45. We might notice that
the value µ = 45 is not in the center of the 95% confidence interval but closer
to the upper endpoint suggesting that the instrument might be under reading
the true value of 45. It would be wise to continue testing the instrument on a
regular basis on a known sample to ensure that the instrument is continuing to
work well.

(d) To test H0 : σ2 = σ2
0 we use the test statistic

U =
(n− 1)S2

σ2
0

∼ χ2 (n− 1)

For n = 20 and H0 : σ2 = 4, or equivalently H0 : σ = 2, we have

U =
19S2

4
∼ χ2 (19)

The observed value of U is

u =
19 (5.7342)

4
= 27.23745

and

p− value = 2P (U ≥ 27.23745) where U ∼ χ2 (19)

= 0.1985 calculated using R
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Alternatively using the Chi-squared table we have P (U ≥ 27.204) = 1−0.9 = 0.1

so p−value ≈ 2 (0.1) = 0.2. In either case, since the p−value is larger than 0.1,
we would conclude that there is no evidence against the hypothesis H0 : σ2 = 4

based on the observed data.

A 100p% confidence interval for σ based on the pivotal quantity

U =
(n− 1)S2

σ2
∼ χ2 (n− 1)

is given by [√
(n− 1) s2

b
,

√
(n− 1) s2

a

]
where P (U ≤ a) = (1− p) /2 = P (U ≥ b). For n = 20 and p = 0.95 we have
P (U ≤ 8.907) = 0.025 = P (U ≥ 32.852) and the confidence interval for σ is[√

19 (5.7342)

32.852
,

√
19 (5.7342)

8.907

]
= [1.82, 3.50]

Based on these data there is no evidence to contradict the manufacturer’s claim
that the variability in measurements is less than two parts per billion. Note
however that the confidence for σ does contain values of σ larger than 2 so again
it would be wise to continue testing the instrument on a regular basis on a known
sample to ensure that the instrument is continuing to work well.

(e) For the new data the observed value of the discrepancy measure

D =

∣∣Ȳ − µ0

∣∣
S/
√
n

is

d =
|44.1− 45|
2.1/
√

25
= 2.1429

and

p− value = P (D ≥ d;H0)

= P (|T | ≥ 2.1429) where T ∼ t (24)

= 2 [1− P (T ≤ 2.1429)]

= 0.04247 calculated using R

Alternatively using the t table we have P (T ≤ 2.0639) = 0.975 and
P (T ≤ 2.4922) = 0.99 so

2 (1− 0.99) ≤ p− value ≤ 2 (1− 0.975)

or 0.02 ≤ p− value ≤ 0.05
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In either case since 0.02 ≤ p − value ≤ 0.05 and there is evidence against the
hypothesis H0 : µ = 45 based on the data.

Since P (T ≤ 2.0639) = 0.975 a 95% confidence interval for µ is[
44.1− 2.0639 (2.1) /

√
25, ȳ + 2.0639 (2.1) /

√
25
]

= [43.23, 44.97]

which only contains values of µ less than 45. Based on these data it would appear
that the new instrument is giving measurements on average which are below the
true value of 45 parts per billion and therefore the new instrument needs to be
adjusted.

For these new data a statistically significant result of under measuring has been
determined. The question of whether this result is of practical significance can
only be answered by the people who use these results to make a decision. With
many labs results decisions are made based on whether the observed measure-
ment is within a certain interval which is considered to “safe”or not. Dioxins
are poisonous to humans. Unfortunately dioxins are present in the food we eat.
The 95% confidence interval suggests that the new instrument is giving results
which are under reporting by 1− 2 parts per billion on average. What we need
now is an expert on dioxin who can tell us how much a difference 1−2 parts per
billion makes in the context of how these results are used in the hospital lab.

(f) Here is the R code plus the output:
y<-c(44.1,46,46.6,41.3,44.8,47.8,44.5,45.1,42.9,44.5,
+ 42.5,41.5,39.6,42,45.8,48.9,46.6,42.9,47,43.7)
> t.test(y,mu=45,conf.level=0.95) # test hypothesis mean=45

One Sample t-test

data: y
t = -1.1112, df = 19, p-value = 0.2803
alternative hypothesis: true mean is not equal to 45
95 percent confidence interval:
43.28429 45.52571
sample estimates:
mean of x
44.405

> # and gives 1 95% confidence interval
> df<-length(y)-1 # degrees of freedom
> s2<-var(y) # sample variance
> p<-0.95 # p=0.95 for 95% confidence interval
> a<-qchisq((1-p)/2,df) # lower value from Chi-squared dist’n
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> b<-qchisq((1+p)/2,df) # upper value from Chi-squared dist’n
> c(s2*df/b,s2*df/a) # confidence interval for sigma squared
[1] 3.31634 12.23256
> c(sqrt(s2*df/b),sqrt(s2*df/a)) # confidence interval for sigma
[1] 1.821082 3.497508
> sigma0sq<-2^2 # test hypotheis sigma=2 or sigmasq=4
> chitest<-s2*df/sigma0sq
> q<-pchisq(chitest,df)
> min(2*q,2*(1-q))
[1] 0.1984887

5.4 To test H0 : µ = 45 when σ2 = 4 is known we use the discrepancy measure

D =

∣∣Ȳ − 45
∣∣

2/
√

20
where Z =

Ȳ − 45

2/
√

20
∼ N (0, 1)

The observed value of D is

d =
|44.405− 45|

2/
√

20
= 1.33

and

p− value = P (D ≥ d;H0)

= P (|Z| ≥ 1.33) where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 1.33)] = 2 (1− 0.90824)

= 0.18352

Since p−value > 0.1 there is no evidence to contradict the manufacturer’s claim that
H0 : µ = 45 based on the data.

A 95% confidence interval for µ is given by[
44.405− 1.96 (2) /

√
20, 44.405 + 1.96 (2) /

√
20
]

= [43.52, 45.29]

5.5 To test the hypothesis H0 : µ = 105 we use the discrepancy measure or test statistic

D =

∣∣Ȳ − 105
∣∣

S/
√

12

where

S =

[
1

11

12∑
i=1

(
Yi − Ȳ

)2]1/2

and

T =
Ȳ − 105

S/
√

12
∼ t (11)
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assuming the hypothesis H0 : µ = 105 is true.
For these data ȳ = 104.13, s2 = 88.3115 and s = 9.3974. The observed value of the
discrepancy measure D is

d =
|ȳ − 105|
s/
√

12
=
|104.13− 105|
9.3974/

√
12

= 0.3194

and

p− value = P (D ≥ d;H0)

= P (|T | ≥ 0.3194) where T ∼ t (11)

= 2 [1− P (T ≤ 0.3194)] = 2 (0.3777)

= 0.7554 calculated using R

Alternatively using the t table in the Course Notes we have P (T ≤ 0.2596) = 0.6 and
P (T ≤ 0.5399) = 0.7 so

2 (1− 0.7) ≤ p− value ≤ 2 (1− 0.6)

or 0.6 ≤ p− value ≤ 0.8

In either case since the p−value is much larger than 0.1 and we would conclude that,
based on the observed data, there is no evidence against the hypothesis H0 : µ = 105.
(Note: This does not imply the hypothesis is true!)

5.6 To test H0 : σ2 = σ2
0 when µ is known we use the test statistic

U =

12∑
i=1

(Yi − µ)2

σ2
0

∼ χ2 (n)

For n = 12, µ = 105 and H0 : σ2 = 100, we have

U =

12∑
i=1

(Yi − 105)2

100
∼ χ2 (12)

Since

12∑
i=1

(yi − 105)2 =
12∑
i=1

y2
i − 2 (105)

12∑
i=1

yi + 12 (105)2

= 131096.44− 210 (1249.6) + 12 (105)2 = 980.44

The observed value of U is

u =
980.44

100
= 9.8044
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and

p− value = 2P (U ≤ 9.8044) where U ∼ χ2 (12)

= 0.73 calculated using R

Alternatively using the Chi-squared table in the Course Notes we have
P (U ≤ 9.034) = 0.3 so p− value > 2 (0.3) = 0.6. In either case since the p− value is
larger than 0.1 and we would conclude that, based on the observed data, there is no
evidence against the hypothesis H0 : σ2 = 100.

From the Chi-squared table P (U ≤ 4.404) = 0.025 and P (U ≤ 23.337) = 0.975 where
U ∼ χ2 (12). Since

0.95 = P (4.404 ≤ U ≤ 23.337) = P

4.404 ≤

12∑
i=1

(Yi − 105)2

σ2
≤ 23.337



= P


12∑
i=1

(Yi − 105)2

23.337
≤ σ2 ≤

12∑
i=1

(Yi − 105)2

4.404



= P


√√√√√ 12∑

i=1
(Yi − 105)2

23.337
≤ σ ≤

√√√√√ 12∑
i=1

(Yi − 105)2

4.404


a 95% confidence interval for σ is given by

√√√√√ 12∑
i=1

(yi − 105)2

23.337
,

√√√√√ 12∑
i=1

(yi − 105)2

4.404

 =

[√
980.44

23.337
,

√
980.44

4.404

]
= [6.482, 14.921]

5.7 (a) The respondents to the survey are students who heard about the online referen-
dum and then decided to vote. These students may not be representative of all
students at the University of Waterloo. For example, it is possible that the stu-
dents who took the time to vote are also the students who most want a fall study
break. Students who don’t care about a fall study break probably did not bother
to vote. This is an example of sample error. Any online survey such as this on-
line referendum has the disadvantage that the sample of people who choose to
vote are not necessarily a representative sample of the study population of in-
terest. The advantage of online surveys is that they are inexpensive and easy to
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conduct. To obtain a representative sample you would need to select a random
sample of all students at the University of Waterloo. Unfortunately taking such
a sample would be much more time consuming and costly then conducting an
online referendum.

(b) A suitable target population would be the 30, 990 eligible voters. This would
also be the study population. Note that all undergraduates were able to vote
but it is not clear how the list of undergraduates is determined.

(c) The attribute of interest is the proportion of the 30, 990 eligible voters (the
study population) who would respond yes to the question. The parameter θ in
the Binomial model corresponds to this attribute. A Binomial model assumes
independent trials (students) which might not be a valid assumption. For ex-
ample, if groups of students, say within a specific faculty, all got together and
voted, their responses may not be independent events.

(d) The maximum likelihood estimate of θ based on the observed data is

θ̂ =
4440

6000
= 0.74

Since this estimate is not based on a random sample it is not possible to say how
accurate this estimate is.

(e) An approximate 95% confidence interval for θ is given by

0.74± 1.96

√
0.74 (0.26)

6000
= 0.74± 0.01 = [0.73, 0.75]

(f) Since θ = 0.7 is not a value contained in the approximate 95% confidence interval
[0.73, 0.75] for θ, therefore the approximate p− value for testing H0 : θ = 0.7 is
less than 0.05. (Note that since θ = 0.7 is far outside the interval, the p− value
would be much smaller than 0.05.)

5.8 (a) If H0 : θ = 3 is true then since Yi has a Poisson distribution with mean 3,

i = 1, 2, . . . , 25 independently, then
25∑
i=1

Yi has a Poisson distribution with mean

3× 25 = 75. The discrepancy measure

D =

∣∣∣∣ 25∑
i=1

Yi − 75

∣∣∣∣ =

∣∣∣∣ 25∑
i=1

Yi − E
(

25∑
i=1

Yi

)∣∣∣∣
is reasonable since it is measuring the agreement between the data andH0 : θ = 3

by using the distance between the observed value of
25∑
i=1

Yi and its expected value

E

(
25∑
i=1

Yi

)
= 75.
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For the given data,
25∑
i=1

yi = 51. The observed value of the discrepancy measure

is

d =

∣∣∣∣ 25∑
i=1

yi − 75

∣∣∣∣ = |51− 75| = 24

and

p− value = P (D ≥ d;H0)

= P

(∣∣∣∣ 25∑
i=1

Yi − 75

∣∣∣∣ ≥ 24;H0

)
=

51∑
x=0

75xe−75

x!
+
∞∑

x=99

75xe−75

x!

= 1−
98∑

x=52

75xe−75

x!

= 0.006716 calculated using R

Since 0.001 < p− value < 0.01 we would conclude that there is strong evidence
against the hypothesis H0 : θ = 3 based on the data.

(b) If Yi has a Poisson distribution with mean θ and variance θ, i = 1, 2, . . . , n

independently then by the Central Limit Theorem

Ȳ − E
(
Ȳ
)√

V ar
(
Ȳ
) =

Ȳ − θ√
θ/n

has approximately a N (0, 1) distribution.

(c) If H0 : θ = 3 is true then E
(
Ȳ
)

= 3. The discrepancy measure D =
∣∣Ȳ − 3

∣∣ is
reasonable for testing H0 : θ = 3 since it is measuring the agreement between
the data and H0 : θ = 3 by using the distance between the observed value of Ȳ
and its expected value E

(
Ȳ
)

= 3.

The observed value of the discrepancy measure is

d = |ȳ − 3| =
∣∣∣∣51

25
− 3

∣∣∣∣ = |2.04− 3| = 0.96

and also
|ȳ − 3|√

3/25
=

0.96√
3/25

= 2.77

Therefore

p− value = P (D ≥ d;H0)

= P
(∣∣Ȳ − 3

∣∣ ≥ 0.96;H0

)
≈ P

(
|Z| ≥ 0.96√

3/25

)
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 2.77)] = 0.005584
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The approximate p − value of 0.005584 is close to the p − value calculated in
(a) which is the exact p − value. Since we are only interested in whether the
p− value is bigger than 0.1 or between 0.1 and 0.05 etc. we are not as worried
about how good the approximation is. In this example the conclusion about H0

is the same for the approximate p− value as it is for the exact p− value.

5.9 The observed value of the likelihood ratio test statistic for testing H0 : θ = 3 is

λ (3) = −2 logR (3) = −2 log

[(
3

2.04

)51

e25(2.04−3)

]
= −2 log (0.01315) = 8.6624

and

p− value = P (Λ (3) ≥ 8.6624;H0)

≈ P (W ≥ 8.6624) where W ∼ χ2 (1)

= P
(
|Z| ≥

√
8.6624

)
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 2.94)] = 0.00328

The p− value is close to the p− values calculated in 8 (a) and 8 (c).

5.10 Since

R (θ) =

[
3.6

θ
e(1−3.6/θ)

]20

for θ > 0

then

R (5) =

[
3.6

5
e(1−3.6/5)

]20

= 0.3791

The observed value of the likelihood ratio test statistic for testing H0 : θ = 5 is

λ (5) = −2 logR (5) = −2 log (0.3791) = 1.9402

Therefore

p− value ≈ P (W ≥ 1.9402) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
1.9402

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 1.39)] = 2 (1− 0.91774) = 0.16452

and since p− value > 0.1 there is no evidence against H0 : θ = 5 based on the data.
The approximate 95% confidence interval for θ is [2.40, 5.76] which contains the value
θ = 5. This also implies that the p− value > 0.05 and so the approximate confidence
interval is consistent with the test of hypothesis.
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5.11 Since
r (θ) = 15 log [2.3 (θ + 1)]− 34.5 (θ + 1) + 15 for θ > −1

then
r (−0.1) = 15 log [2.3 (−0.1 + 1)]− 34.5 (−0.1 + 1) + 15 = −5.1368

The observed value of the likelihood ratio test statistic for testing H0 : θ = −0.1 is

λ (−0.1) = −2r (−0.1) = −2 (−5.1368) = 10.2735

Therefore

p− value ≈ P (W ≥ 10.2735) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
10.2735

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 3.21)] = 2 (1− 0.99934) = 0.00132

and since 0.001 < p − value < 0.01 there is strong evidence against H0 : θ = −0.1

based on the data. The approximate 95% confidence interval for θ is [−0.75,−0.31]

which does not contain the value θ = −0.1. This also implies that the p−value < 0.05

and so the approximate confidence interval is consistent with the test of hypothesis.

5.12 Since

R (θ) =
θ16 (1− θ)66

(8/41)16 (33/41)66 for 0 < θ ≤ 1

2

then

R (0.18) =
(0.18)16 (1− 0.18)66

(8/41)16 (33/41)66 = 0.9397

The observed value of the likelihood ratio test statistic for testing H0 : θ = 0.18 is

λ (0.18) = −2 logR (0.18) = −2 log (0.9397) = 0.1244

Therefore

p− value ≈ P (W ≥ 0.1244) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
0.1244

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 0.35)] = 2 (1− 0.63683) = 0.72634

and since p − value > 0.1 there is no evidence against H0 : θ = 0.18 based on the
data. The approximate 95% confidence interval for θ is [0.12, 0.29] which contains the
value θ = 0.18. This also implies that the p − value > 0.05 and so the approximate
confidence interval is consistent with the test of hypothesis.

5.13 (a) The maximum likelihood estimate of θ is θ̂ = 18698.6/20 = 934.93. The agree-
ment between the plot of the empirical cumulative distribution function and
the cumulative distribution function of an Exponential(934.93) random variable
given in Figure 5.2 indicates that the Exponential is reasonable.
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Figure 5.2: Empirical cdf and Exponential(934.93) cdf for failure times

(b) The observed value of the likelihood ratio statistic for testing H0 : θ = θ0 for
Exponential data is (see Example 5.3.2) is

λ (θ0) = −2 logR (θ0) = −2 log

[(
θ̂

θ0

)n
en(1−θ̂/θ0)

]

where θ̂ = ȳ. For n = 20, θ̂ = ȳ = 934.93 and θ0 = 1000 we have

λ (1000) = −2 log

[(
934.93

1000

)20

e20(1−934.93/1000)

]
= 2 log (0.95669) = 0.0885

with

p− value ≈ P (W ≥ 0.0885) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
0.0885

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 0.30)] = 2 (1− 0.61791) = 0.76418

Since p− value > 0.1 there is no evidence against the hypothesis H0 : θ = 1000

based on the observed data.

5.14 A test statistic that could be used will be to test the mean of the generated sample.
The mean should be closed to 0.5 if the random number generator is working well.

5.15 (a) For each given region the assumptions of independence, individuality and homo-
geneity would need to hold for the number of events per person per year.
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(b) Assume the observations y1, y2, . . . , yK from the different regions are indepen-
dent. Since Yj ∼ Poisson(Pjθjt) then the likelihood function for
θ = (θ1, θ2, . . . , θK) is

L (θ) =
K∏
j=1

(Pjθjt)
yj e−Pjθjt

yj !

or more simply

L (θ) =
K∏
j=1

θ
yj
j e
−Pjθjt

and the log likelihood function is

l (θ) =
K∑
j=1

[yj log θj − Pjθjt]

Since
∂l

∂θj
=
yj
θj
− Pjt =

yj − (Pjt) θj
θj

= 0

for θj = yj/ (Pjt), the maximum likelihood estimate of θj is θ̂j = yj/ (Pjt),
j = 1, 2, . . . ,K. So

l(θ̂) =
K∑
j=1

[
yj log θ̂j − Pj θ̂jt

]
=

K∑
j=1

[
yj log

(
yj
Pjt

)
− yj

]
=

K∑
j=1

yj

[
log

(
yj
Pjt

)
− 1

]
The likelihood function assuming H0 : θ1 = θ2 = · · · = θK is given by

L (θ) =
K∏
j=1

θyje−Pjθt

with log likelihood function

l (θ) =

(
K∑
j=1

yj

)
log θ − θt

K∑
j=1

Pj

Since

l′ (θ) =
1

θ

K∑
j=1

yj −
K∑
j=1

Pjt =
1

θ

[
K∑
j=1

yj − θt
K∑
j=1

Pj

]
= 0

if θ =
K∑
j=1

yj/
K∑
j=1

Pjt, the maximum likelihood estimate of θ assuming
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H0 : θ1 = θ2 = · · · = θK is θ̂0 =
K∑
j=1

yj/t
K∑
j=1

Pj . So

l(θ̂0) =

(
K∑
j=1

yj

)
log θ̂0 − θ̂0

K∑
j=1

Pjt

=

(
K∑
j=1

yj

)
log


K∑
j=1

yj

t
K∑
j=1

Pj

−


K∑
j=1

yj

t
K∑
j=1

Pj

 K∑
j=1

Pjt

=

(
K∑
j=1

yj

)[
log

(
K∑
j=1

yj/t
K∑
j=1

Pj

)
− 1

]

The likelihood ratio test statistic for testing H0 : θ1 = θ2 = · · · = θK is

Λ = 2l(θ̃)− 2l(θ̃0)

= 2

K∑
j=1

Yj

[
log

(
Yj
Pjt

)
− 1

]
− 2

(
K∑
j=1

Yj

)[
log

(
K∑
j=1

Yj/t
K∑
j=1

Pj

)
− 1

]

The observed value of Λ is

λ = 2l(θ̂)− 2l(θ̂0)

= 2
K∑
j=1

yj

[
log

(
yj
Pjt

)
− 1

]
− 2

(
K∑
j=1

yj

)[
log

(
K∑
j=1

yj/t
K∑
j=1

Pj

)
− 1

]

The p− value is

P (Λ ≥ λ;H0) ≈ P (W ≥ λ) where W ∼ χ2 (K − 1)

(c) For the given data

θ̂ =

(
27

5 (2025)
,

18

5 (1116)
,

41

5 (3210)
,

29

5 (1687)
,

31

5 (2840)

)
and θ̂0 =

146

5 (10878)

λ = 3.73 and p − value ≈ P (W ≥ 3.73) = 0.44 where W ∼ χ2 (4). Since
p − value > 0.1 there is no evidence based on the data against H0 : θ1 = θ2 =

· · · = θ5, that is, that the rates are equal.

5.16 Let µG = mean of the Poisson model for Gretzky and µC = mean of the Poisson
model for Crosby. From Example 5.4.3

l(θ) = l(µG, µC)

= nx̄ log (µG)− nµG +mȳ log (µC)−mµC
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For the Gretzky data n = 696 and x̄ = 1669
696 = 2.398. For the Crosby data m = 783

and ȳ = 1027
783 = 1.3116. Now θ̂ = (x̄, ȳ) = (2.398, 1.3116), µ̂ = nx̄+mȳ

n+m = 1.8229 and
θ̂0 = (µ̂, µ̂) = (1.8229, 1.8229). The observed value of the likelihood ratio statistic is

λ = 2
[
l(θ̂)− l(θ̂0)

]
= 2 [l(2.398, 1.3116)− l(1.8229, 1.8229)]

= 2 (−957.6534 + 1077.313) = 239.320

and p − value ≈ P (W ≥ 239.320) ≈ 0 where W ∼ χ2 (1). Since p − value ≈ 0 there
is very strong evidence based on the data against the hypothesis of equal means.

5.17 (a) µ̃ = Y , σ̃2 = 1
n

n∑
i=1

(Yi−Y ), µ̂0 = µ0, σ̃
2
0 = 1

n

n∑
i=1

(Yi−µ0), and Λ (µ0) = n log
(
σ̃20
σ̃2

)
.

σ̃2
0

σ̃2 =

1
n

n∑
i=1

(Yi − µ0)

1
n

n∑
i=1

(Yi − Y )

=

n∑
i=1

(Yi − Y ) + n(Y − µ0)2

n∑
i=1

(Yi − Y )

so that

Λ (µ0) = n log

1 +
n(Y − µ0)2

n∑
i=1

(Yi − Y )

 = n log

(
1 +

T 2

n− 1

)
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SOLUTIONS TO CHAPTER 6
PROBLEMS

The following identities, proved in the Chapter 1 problems, will be used in problems 1 and
2.

0 =
n∑
i=1

(yi − ȳ) =
n∑
i=1

(xi − x̄)

Syy =
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

yi (yi − ȳ) =
n∑
i=1

y2
i −

1

n

(
n∑
i=1

yi

)2

Sxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

xi (xi − x̄) =
n∑
i=1

x2
i −

1

n

(
n∑
i=1

xi

)2

Sxy =
n∑
i=1

(xi − x̄) (yi − ȳ) =
n∑
i=1

xi (yi − ȳ) =
n∑
i=1

(xi − x̄) yi

6.1 If ai = (xi−x̄)
Sxx

then

n∑
i=1

ai =
n∑
i=1

(xi − x̄)

Sxx
=

1

Sxx

n∑
i=1

(xi − x̄) =
1

Sxx
(0) = 0

n∑
i=1

aixi =
n∑
i=1

(xi − x̄)

Sxx
xi =

1

Sxx

n∑
i=1

xi (xi − x̄) =
Sxx
Sxx

= 1

n∑
i=1

a2
i =

n∑
i=1

[
(xi − x̄)

Sxx

]2

=

(
1

Sxx

)2 n∑
i=1

(xi − x̄)2 =
Sxx

(Sxx)2 =
1

Sxx

If bi = 1
n + (x− x̄) (xi−x̄)

Sxx
then

n∑
i=1

bi =
n∑
i=1

[
1

n
+ (x− x̄)

(xi − x̄)

Sxx

]
=

1

n

n∑
i=1

1 +
(x− x̄)

Sxx

n∑
i=1

(xi − x̄) = 1 + 0 = 1

n∑
i=1

bixi =
n∑
i=1

[
1

n
+ (x− x̄)

(xi − x̄)

Sxx

]
xi =

1

n

n∑
i=1

xi +
(x− x̄)

Sxx

n∑
i=1

(xi − x̄)xi

= x̄+
(x− x̄)

Sxx
Sxx = x̄+ (x− x̄) = x
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n∑
i=1

b2i =
n∑
i=1

[
1

n
+ (x− x̄)

(xi − x̄)

Sxx

]2

=

(
1

n

)2 n∑
i=1

1 + 2

(
1

n

)
(x− x̄)

Sxx

n∑
i=1

(xi − x̄) +

(
x− x̄
Sxx

)2 n∑
i=1

(xi − x̄)2

=

(
1

n

)2

(n) + 0 +

(
x− x̄
Sxx

)2

Sxx

=
1

n
+

(x− x̄)2

Sxx

6.2

0 =
∂l

∂α
=

1

σ2

n∑
i=1

(yi − α− βxi) =
1

σ2

[
n∑
i=1

yi −
n∑
i=1

α− β
n∑
i=1

xi

]

=
1

σ2

n


n∑
i=1

yi

n

− nα− nβ


n∑
i=1

xi

n


 =

n

σ2
(ȳ − α− βx̄)

so α = ȳ − βx̄

0 =
∂l

∂β
=

1

σ2

n∑
i=1

(yi − α− βxi)xi =
1

σ2

(
n∑
i=1

xiyi − α
n∑
i=1

xi − β
n∑
i=1

x2
i

)
=

1

σ2

[
n∑
i=1

xiyi − (ȳ − βx̄)
n∑
i=1

xi − β
n∑
i=1

x2
i

]
since α = ȳ − βx̄

=
1

σ2

[
n∑
i=1

xi (yi − ȳ) + βx̄
n∑
i=1

xi − β
n∑
i=1

x2
i

]
=

1

σ2

[
n∑
i=1

xi (yi − ȳ)− β
n∑
i=1

xi(xi − x̄)

]

so β =

n∑
i=1

xi (yi − ȳ)

n∑
i=1

xi(xi − x̄)

=
Sxy
Sxx

Therefore the maximum likelihood estimates are

α̂ = ȳ − β̂x̄, β̂ =
Sxy
Sxx

∂l

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(yi − α− βxi)2 = 0

so σ2 =
1

n

n∑
i=1

(yi − α− βxi)2

so the maximum likelihood estimate of σ2 is

σ̂2 =
1

n

n∑
i=1

(
yi − α̂− β̂xi

)2
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Since
n∑
i=1

(yi − α̂− β̂xi)2 =
n∑
i=1

(yi − ȳ + β̂x̄− β̂xi)2

=
n∑
i=1

(yi − ȳ)2 − 2β̃
n∑
i=1

(yi − ȳ) (xi − x̄) + β̂
2 n∑
i=1

(xi − x̄)2

= Syy − 2β̂Sxy + β̂

(
Sxy
Sxx

)
Sxx = Syy − β̂Sxy

therefore
σ̂2 =

1

n

(
Syy − β̂Sxy

)
6.3 (a) The maximum likelihood estimates of α and β are

β̂ =
Sxy
Sxx

=
2325.20

2802.00
= 0.8298

α̂ = ȳ − β̂x̄ = 133.56−
(

2325.20

2802.00

)
(43.20) = 97.7111

and an unbiased estimate of σ2 is

s2
e =

1

n− 2
(Syy − β̂Sxy) =

1

23

[
3284.16−

(
2325.20

2802.00

)
(2325.20)

]
= 58.89677

(b) The scatterplot with fitted line and the residual plots shown in Figure 6.1 show
no unusual patterns. The model fits the data well.

(c) Since P (T ≤ 2.0687) = 0.975 where T ∼ t (23) and

se =

[
1

n− 2
(Syy − β̂Sxy)

]1/2

= 7.674423

therefore a 95% confidence interval for β is

β̂ ± 2.0687 (7.674423) /
√

2802.0 = 0.8298± 0.2999 = [0.53, 1.13]

(d) Since P (T ≤ 1.7139) = 0.95 where T ∼ t (23), a 90% confidence interval for the
mean systolic blood pressure of nurses aged x = 35 is

α̂+ β̂(35)± 1.7139 (7.6744)

[
1

25
+

(35− 43.20)2

2802.00

]1/2

= 126.7553± 3.3274 = [123.43, 130.08]

(e) Since P (T ≤ 2.8073) = 0.995 where T ∼ t (23), a 99% prediction interval for the
systolic blood pressure of a nurse aged x = 50 is

α̂+ β̂(50)± 2.8073 (7.6744)

[
1 +

1

25
+

(50− 43.20)2

2802.00

]1/2

= 139.2029± 22.14463 = [117.06, 161.35]
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Figure 6.1: Scatterplot and residual plots for nurses data

6.4

(a) This is an observational study since the person conducting the study is not in
control of the STAT 230 final grades (the explanatory variate).

(b) A possible Problem for this study is to study the relationship between STAT 231
final grades and STAT 230 final grades. In particular the researcher might want
to know, since STAT 230 is a prerequisite for STAT 231, whether students with
higher (lower) STAT 230 final grades also have higher (lower) STAT 231 final
grades. This is a descriptive Problem.

(c) A unit in this study is a student. A suitable target population for this study
would be all students enrolled in STAT 231 in the winter term 2013 and in all
subsequent terms.

(d) There are two variates which are STAT 230 final grade and STAT 231 final grade.
These variates are both discrete variates since only integer grades are assigned.

(e) It makes sense to define x = STAT 230 final grade as the explanatory variate and
y = STAT 231 final grade as the response variate since STAT 230 is a prerequisite
for STAT 231 and the researcher is interested in how a student’s STAT 230 final
grades affects their STAT 231 final grade.

(f) A suitable study population for this study would be all students enrolled in
STAT 231 in the winter term 2013. A possible source of study error might
be that the students enrolled in winter 2013 were systematically different from
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students taking STAT 231 in subsequent terms with respect to the attributes of
interest.

(g) The sampling protocol was to select 30 students at random from all students
enroled in STAT 231 in winter 2013.

(h) It important for the students to be chosen at random from the group of students
taking STAT 231 to ensure that the students in the sample are representative
of all the students enroled in STAT 231 in winter 2013. If the first 30 students
in an alphabetized list of all students were chosen then this could be a source
of sample error since it is possible that the students with last names beginning
with letters at the beginning of the alphabet are systematically different (higher
or lower STAT marks on average) from the other students.

(i) The variates are measured by taking the students grades during the term and
calculating a final grade according to the marking scheme. A possible source
of measurement error might be that certain grades were recorded or calculated
incorrectly.

(j) The sample correlation is

r =
Sxy√
SxxSyy

= 0.8182

(k) See the top left plot in Figure 6.2 for a scatterplot of the data. The points lie
reasonably about a straight line although there is quite a bit of variability about
the line.

(l) Fitted line: y = −4.0667 + 0.9944x

Least squares estimate of α: α̂ = −4.0667

Maximum likelihood estimate of β: β̂ = 0.9944

Unbiased estimate of σ: se = 9.4630

(m) The scatterplot with fitted line and the residual plots shown in Figure 6.2 show
no unusual patterns.

(n) The parameter µ (x) = α + βx corresponds to the mean STAT 231 final grade
for students with a STAT 230 final grade of x in the study population. The
parameter σ represents the variability in the response variate Y in the study
population which is assumed to be the same for each value of the explanatory
variate x in the study population.

(o) The parameter β corresponds to the change in the mean STAT 231 final grade
in the study population for a one mark increase in STAT 230 final grade.

To test the hypothesis H0 : β = 0 we use the test statistic

D =

∣∣∣β̃ − 0
∣∣∣

Se/
√
Sxx
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Figure 6.2: Scatterplot and residual plots for STAT 230/231 final grades

For these data the observed value is

d =

∣∣∣β̂ − 0
∣∣∣

se/
√
Sxx

= 7.5304

and

p− value = 2 [1− P (T ≤ 7.5304)] where T ∼ t (28)

≈ 0

Since p− value ≈ 0 there is very strong evidence based on the data against the
hypothesis H0 : β = 0. Since the simple linear regression model is reasonable for
these data, the data suggest that there is a linear relationship between STAT
231 final grades and STAT 230 final grades. This relationship is also observed
in the scatterplot.

(p) To test the hypothesis that there is no relationship H0 : β = 1 we use the test
statistic

D =

∣∣∣β̃ − 1
∣∣∣

Se/
√
Sxx

For these data the observed value is

d =

∣∣∣β̂ − 1
∣∣∣

se/
√
Sxx

= 0.0428
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and

p− value = 2 [1− P (T ≤ 0.0428)] where T ∼ t (28)

= 0.9662 calculated using R

Since p − value � 0.1 therefore there is no evidence based on the data against
the hypothesis β = 1.

The hypothesis H0 : β = 1 means that we are hypothesizing that, in the study
population, for every one mark increase in STAT 230 final grade there is a one
mark increase in the mean STAT 231 final grade.

(q) Since P (T ≤ 2.0484) = (1 + 0.95)/2 = 0.975 where T ∼ t(28) a 95% confidence
interval for β is

β̂ ± 2.0484 (9.4630) /
√

5135.8667 = 0.9944± 0.2705 = [0.7239, 1.2648]

Since this interval contains the value β = 1 but does not contain the value β = 0,
the confidence interval is consistent with the p − values determined in (o) and
(p).

Interpretation of the confidence interval: Suppose we were able to repeat
the experiment (select 30 students at random from the study population and
record their STAT 230 and STAT 231 final grades) a large number of times and
each time we construct a 95% confidence interval for β for the observed data.
Then, approximately 95% of the constructed intervals would contain the true,
but unknown value of β. We say that we are 95% confident that our interval
[0.7239, 1.2648] contains the true value of β.

(r) A 95% confidence interval for the mean STAT 231 final grade for students with
a STAT 230 final grade of x = 75 is

−4.0667 + (0.9944) (75)± 2.0484 (9.4630)

[
1

30
+

(75− 76.7333)2

5135.8667

]1/2

= 70.50979± 3.56994 = [66.9, 74.1]

Note: Be sure to use all decimal places during your calculations otherwise
rounding will give different final results.

A 95% confidence interval for the mean STAT 231 final grade for students with
a STAT 230 final grade of x = 50 is

−4.0667 + (0.9944) (50)± 2.0484 (9.4630)

[
1

30
+

(50− 76.7333)2

5135.8667

]1/2

= 45.65095± 8.05046 = [37.6, 53.7]

The 95% confidence interval for x = 50 if wider. This is because there are fewer
observations near x = 50 which is close to the smallest observed value of x while
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x = 75 is very close to the mean value of x. There are many more observations
close to the mean of the explanatory variate. Therefore there is less uncertainty
in the estimates of the mean response near the center of the observed data.

(s) A 95% prediction interval for STAT 231 final grade for a student with a STAT
230 final grade of x = 75 is

−4.0667 + (0.9944) (75)± 2.0484 (9.4630)

[
1 +

1

30
+

(75− 76.7333)2

5135.8667

]1/2

= 70.51± 19.71 = [50.8, 90.2]

This interval is much wider than the interval in (r). The interval is wider because
it is an interval for a future observation (random variable) whereas the interval
in (r) is an interval for an unknown constant. The interval is particularly wide
because the estimate of σ which is se = 9.4630 marks is quite large. Recall that
the parameter σ corresponds to the variability about the line y = α+ βx which
we have already observed is large for these data.

One way to obtain a better prediction would be to collect data on more ex-
planatory variates which could possibly explain the variability in STAT 231 final
grades better than just using one explanatory variate.

(t) A 90% confidence interval for σ is[
(9.462966)

√
30− 2

41.33714
, (9.462966)

√
30− 2

16.92788

]
= [7.788182, 12.17041]

In the context of this study the parameter σ represents the variability in STAT
231 final grades for a given STAT 230 final grade. The estimate of σ which is
se = 9.462966 indicates that there is large variability in STAT 231 final grades
for a given STAT 230 final grade.

6.5 (a) The maximum likelihood estimate of α and β are

β̂ =
Sxy
Sxx

=
22769.645

6283.422
= 3.6238

α̂ = ȳ − β̂x̄ = 187.975−
(

22769.645

6283.422

)
(43.03) = 32.0444

The fitted line is y = 32.04 + 3.62x.

(b) The scatterplot with fitted line and the residual plots shown in Figure 6.3 show
no unusual patterns. There is one residual value which is larger than 3 for
x = 50.3.

(c) Since

β̂ =
Sxy
Sxx

and sample correlation = r =
Sxy√
SxxSyy
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Figure 6.3: Scatterplot and residual plots for actor data

therefore

r = β̂

(
Sxx
Syy

)1/2

or β̂ = r

(
Syy
Sxx

)1/2

(d) Since P (T ≤ 2.1009) = 0.975 where T ∼ t (18) and

se =

[
1

n− 2
(Syy − β̂Sxy)

]1/2

= 100.6524

therefore a 95% confidence interval for β is

β̂ ± 2.1009 (100.6524) /
√

6283.422 = 3.6238± 2.6677 = [0.9561, 6.2915]

The study population is all the actors listed at boxoffi cemojo.com/people/. The
parameter β represents the mean change in the amount grossed by a movie for
a unit change in the value of an actor. However, since the 20 data points were
obtained by taking the first 20 actors in the list, the sample is not a random
sample. If actors with last names starting with letters at the beginning of the
alphabet are more or less successful then other actors then the estimate of β
might be biased.

(e) To test H0 : β = 0 we use the test statistic

D =

∣∣∣β̃ − 0
∣∣∣

Se/
√
Sxx
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For these data the observed value is

d =

∣∣∣β̂ − 0
∣∣∣

se/
√
Sxx

= 2.85

and

p− value = 2 [1− P (T ≤ 2.85)] where T ∼ t (18)

= 0.0106 calculated using R

Since 0.01 < p − value < 0.05 there is evidence against H0 : β = 0 based on
the data. Note that this is consistent with the fact that the 95% confidence
interval for β does not contain the value β = 0. Based on this p − value and
the scatterplot, we would conclude that the data suggest a linear relationship
between the amount grossed by a movie and the value of an actor.

(f) Since P (T ≤ 2.1009) = 0.975 where T ∼ t (18), a 95% confidence interval for the
mean amount grossed by movies for actors whose value is x = 50 is

32.0444 + (3.6238) (50)± 2.1009 (100.6524)

[
1

20
+

(50− 43.03)2

6283.422

]1/2

= 213.2326± 50.8090 = [162.4236, 264.0417]

A 95% confidence interval for the mean amount grossed by movies for actors
whose value is x = 100 is

32.0444 + (3.6238) (100)± 2.1009 (100.6524)

[
1

20
+

(100− 43.03)2

6283.422

]1/2

= 394.4209± 159.1644 = [235.2565, 553.5853]

The largest observed x value is x = 92.8. By constructing a confidence interval
for the mean amount grossed by movies for actors whose value is x = 100, we
are assuming that the linear relationship hold beyond the observed data.

6.6 For these data

β̂ =
Sxy
Sxx

=
−3316.6771

22.9453
= −144.5469

α̂ = ȳ − β̂x̄ = 548.9700− (−144.5469) (0.9543) = 686.9159

s2
e =

1

n− 2
(Syy − β̂Sxy) =

1

28
[489624.723− (−144.5469) (−3316.6771)] = 364.6199

se = 19.0950

(a) The fitted line is y = 686.9159− 144.5469
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(b) See Figure 6.4.
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Figure 6.4: Scatterplot and fitted line for building price versus size

(c) Since β̂ is negative this implies that the larger sized buildings tend to sell for
less per square meter. The estimate β̂ = −144.55 indicates a drop in average
price of $144.55 per square meter for each increase of one unit in x; remember
x’s units are m2(105).

(d) Since P (T ≤ 2.0484) = 0.975 for T ∼ t (28), a 95% confidence interval for µ(4.47)

is

µ̂(4.47)± 2.0484se

√
1

30
+

(4.47− x̄)2

Sxx

= $40.79± $29.58

= [$11.21, $70.37]

(e) A 95% prediction interval for Y when x = 4.47 is

µ̃(4.47)± 2.0484se

√
1 +

1

30
+

(4.47− x̄)2

22.945
= $40.79± $49.04

= [−$8.25, $89.83]

The lower limit is negative, which is nonsensical. This happened because we
were using a Gaussian model (Gaussian random variables Y can be positive or
negative) in a setting where the price Y must be positive. Nonetheless, the



124 SOLUTIONS TO CHAPTER 6 PROBLEMS

Gaussian model fits the data reasonably well. We might just truncate the pre-
diction interval and take it to be [0, $89.83].

(f) It is better to use the predication interval since we are only interested in the
assessed value for one building. Note however that the value x = 4.47 is well
outside the interval of observed x values which was [0.20, 3.26]) in the data set
of 30 buildings. Thus any conclusions we reach are based on an assumption that
the linear model E (Y |x) = α + βx applies beyond x = 3.26 at least as far as
x = 4.47. This may or may not be true, but we have no way to check it with
the data we have.

6.7 (a) Recall this was a regression of the form E(Yi) = α + βx1i where x1i = x2
i ,

and xi = bolt diameter. Now n = 30, α̂ = 1.6668, β̂ = 2.8378, se = 0.05154,
Sxx = 0.2244, x̄1 = 0.11. A point estimate of the mean breaking strength at
x1 = (0.35)2 = 0.1225 is

µ̂(0.1225) = α̂+ β̂(0.1225) = 1.667 + 2.838(0.1225) = 2.01447

A confidence interval for µ(0.1225) is

µ̂(0.1225)± ase

√
1

n
+

(0.1225− x̄1)2

Sxx

From the t table, P (T ≤ 2.0484) = 0.975 where T ∼ t (28). The 95% confidence
interval is

2.01447± 2.0484(0.05154)

√
1

30
+

(0.1225− 0.11)2

0.2244

= 2.01447± 0.01932 = [1.9952, 2.0338]

(b) A 95% prediction interval for the strength at x1 = (0.35)2 = 0.1225 is

µ̂(0.1225)± ase

√
1 +

1

n
+

(0.1225− x̄1)2

Sxx

= 2.01447± 2.0484(0.05154)

√
1 +

1

30
+

(0.1225− x̄1)2

0.2244

= 2.01447± 0.10732 = [1.9072, 2.1218]

This interval is wider since it is an interval estimate for a single observation (a
random variable) at x1 = 0.35 rather than an interval estimate for a mean (a
constant).

(c) Since Y represents the mean strength of the bolt of diameter x = 0.35, then
based on the assumed model Y ∼ G (α+ β (0.1225) , σ). Since α, β and σ are
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unknown we estimate them using α̂ = 1.6668, β̂ = 2.8378, and se = 0.05154 and
use Y ∼ G (2.01447, 0.05154). Since V ∼ G (1.60, 0.10) independently of

Y ∼ G (2.01447, 0.05154) then V−Y ∼ G
(

1.60− 2.01447,
√

(0.1)2 + (0.05154)2

)
or V − Y ∼ G (−0.41447, 0.1125). Therefore an estimate of P (V > Y ) is

P̂ (V > Y ) = P̂ (V − Y > 0) = P

(
Z >

0− (−0.41447)

0.1125

)
where Z ∼ G (0, 1)

= 1− P (Z ≤ 3.68) ≈ 0

6.8 (a)

β̂ =
Sxy
Sxx

=
2818.556835

2818.946855
= 0.9999

α̂ = ȳ − β̂x̄ = 23.5505− 23.7065× 0.9999 = −0.1527

The scatterplot with fitted line and the residual plots shown in Figure 6.5 show
no unusual patterns. The model fits the data well.
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Figure 6.5: Scatterplot and residual plots for cheap versus expensive procedures

(b) Since P (T ≤ 2.1009) = 0.975 where T ∼ t (18) and

se =

(
Syy − β̂Sxy
n− 2

)1/2

=

[
2820.862295− (0.9998616) (2818.556835)

18

]1/2

= 0.3870



126 SOLUTIONS TO CHAPTER 6 PROBLEMS

a 95% confidence interval for β is

0.9999± 2.1009 (0.3870) /
√

2818.946855 = [0.9845, 1.0152] .

Since the value β = 1 is inside the 95% confidence interval for β we know the
p− value for testing H0 : β = 1 is greater than 0.05. Alternatively

p− value = 2

1− P

T ≤
∣∣∣β̂ − 1

∣∣∣
se/
√
Sxx

 = 2 [1− P (T ≤ 0.019)] = 0.99

Since p− value > 0.1 there is no evidence against H0 : β = 1 based on the data.
A 95% confidence interval for α is

−0.1527± 2.1009(0.3870)

√
1

20
+

(0− 23.7065)2

2818.946855
= [−0.5587, 0.2533]

Since α = 0 is inside the 95% confidence interval for α we know the p − value
for testing H0 : α = 0 is greater than 0.05. Alternatively

p−value = 2

1− P

T ≤ |α̂− 0|

se

√
1
n + (0−x̄)2

Sxx

 = 2 [1− P (T ≤ 0.7903)] = 0.4396

Since p− value > 0.1 there is no evidence against H0 : α = 0 based on the data.
The question of interest is how well the cheaper way of determining concentra-
tions compares with the more expensive way. To put this question in terms of
the model we first note that the assumed model is

Yi ∼ G(α+ βxi, σ) for i = 1, 2, . . . , n independently

If the cheaper way worked perfectly then the measurements using the cheaper
way would be identical to the more expensive way plus some variability. That
is, the model would be

Yi ∼ G(xi, σ) for i = 1, 2, . . . , n independently

This means we are interested in whether the model with β = 1 and α = 0 fits
the data well. This is the reason why we test the hypotheses H0 : β = 1 and
H0 : α = 0.

(c) The scatterplot plus the fitted line indicates good agreement between the cheaper
way of determining concentrations and the more expensive way. The points
lie quite close to the fitted line. The data suggest that the cheaper way of
determining concentrations is quite accurate since the cheaper way does not
appear to consistently give values which are systematically above (or below) the
concentration determined by the more expensive way.
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(d) Since the fitted model is

y = −0.1527 + 0.9999x

the point estimate of the y-intercept is α̂ = −0.1527 which is slightly negative
which suggests the cheaper way is giving values lower than the true concentration
as determined by the more expensive way. However, the confidence interval for α
was [−0.5587, 0.2533] which certainly includes the value α = 0 as well as values
of α above and below zero. The data do not suggest the cheaper way is giving
lower values. If the confidence interval only contained negative values then this
would be strong evidence that the cheaper way is giving lower values.

6.9 (a) The likelihood function is for β is

L(β) =
n∏
i=1

1√
2πσ

exp

[
− 1

2σ2
(yi − βxi)2

]
for β ∈ <

or more simply

L(β) = exp

[
− 1

2σ2

n∑
i=1

(yi − βxi)2

]
for β ∈ <

The log likelihood function is

l(β) = − 1

2σ2

n∑
i=1

(yi − βxi)2 for β ∈ <

Maximizing l(β) is equivalent to minimizing g(β) =
n∑
i=1

(yi − βxi)2 which is the

criterion for determining the least squares estimate of β.
Solving

l′(β) =
1

σ2

n∑
i=1

(yi − βxi)xi = 0

we obtain both the maximum likelihood estimate and the least squares estimate
of β given by

β̂ =

n∑
i=1

xiyi

n∑
i=1

x2
i

(b) Note that

β̃ =

n∑
i=1

xiYi

n∑
i=1

x2
i

=
n∑
i=1

 xi
n∑
i=1

x2
i

Yi =
n∑
i=1

aiYi where ai =
xi
n∑
i=1

x2
i
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so β̃ is a linear combination of independent Normal random variables and there-
fore has a Normal distribution. Since

E(β̃) =
n∑
i=1

 xi
n∑
i=1

x2
i

E (Yi) =
1

n∑
i=1

x2
i

n∑
i=1

xi (βxi) =
β

n∑
i=1

x2
i

n∑
i=1

x2
i = β

and

V ar(β̃) =
n∑
i=1

 xi
n∑
i=1

x2
i


2

V ar (Yi) =
1[

n∑
i=1

x2
i

]2

n∑
i=1

x2
iσ

2 =
σ2

n∑
i=1

x2
i

therefore

β̃ =

n∑
i=1

xiYi

n∑
i=1

x2
i

∼ N

β, σ2

n∑
i=1

x2
i


(c)

n∑
i=1

(yi − β̂xi)2 =
n∑
i=1

(
y2
i − 2xiyiβ̂ + x2

i β̂
2
)

=
n∑
i=1

y2
i − 2


n∑
i=1

xiyi

n∑
i=1

x2
i


︸ ︷︷ ︸

β̂

n∑
i=1

xiyi +


n∑
i=1

xiyi

n∑
i=1

x2
i


2

︸ ︷︷ ︸
β̂
2

n∑
i=1

x2
i

=
n∑
i=1

y2
i − 2

[
n∑
i=1

xiyi

]2

n∑
i=1

x2
i

+

[
n∑
i=1

xiyi

]2

n∑
i=1

x2
i

=
n∑
i=1

y2
i −

[
n∑
i=1

xiyi

]2

n∑
i=1

x2
i

as required.

(d) Find a in the t table such that P (−a ≤ T ≤ a) = 0.95 where T ∼ t (n− 1).
Then since

0.95 = P

−a ≤ β̃ − β

Se/
√∑n

i=1 x
2
i

≤ a


= P

(
β̃ − aSe/

√
n∑
i=1

x2
i ≤ β ≤ β̃ + aSe/

√
n∑
i=1

x2
i

)
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a 95% confidence interval for β is given by[
β̂ − ase/

√
n∑
i=1

x2
i , β̂ + ase/

√
n∑
i=1

x2
i

]

(e) Define the discrepancy measure

D =
|β̃ − β0|

Se/

√
n∑
i=1

x2
i

Under the null hypothesis H0 : β = β0, the p− value is given by

P

|T | > |β̂ − β0|

se/

√
n∑
i=1

x2
i

 = 2

1− P

T ≤ |β̂ − β0|

se/

√
n∑
i=1

x2
i




where T ∼ t(n− 1).

6.10 (a)

β̂ =

n∑
i=1

xiyi

n∑
i=1

x2
i

=
13984.5554

14058.9097
= 0.9947

and the fitted model is y = 0.9947x.

(b) The scatterplot with fitted line, the residual plots, and the qqplot of the residuals
are given in Figure 6.6. If the model is correct we should see the points in the
scatterplot lying about the fitted line with no unusual pattern, the residual plots
should look like a band of points about the line r = 0, and the qqplot should be
a set of points which lie reasonably about a straight line with more variability
at each end. These behaviours are what were observe in the graphs below and
so the model appears to fit the data well.

(c) Since P (T ≤ 2.0930) = 0.975 where T ∼ t (19) and

se =

 1

n− 1


n∑
i=1

y2
i −

(
n∑
i=1

xiyi

)2

n∑
i=1

x2
i




1/2

=

[
1

19

(
13913.3833− 13984.55542

14058.9097

)]1/2

= 0.3831
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Figure 6.6: Scatterplot and residual plots for model through the origin

a 95% confidence interval for β is given by

β̂ ± ase/
√

n∑
i=1

x2
i = 0.9947± 2.0930(0.3831)/

√
14058.9097 = [0.9879, 1.0015]

For testing H0 : β = 1 we have

p− value = 2

[
1− P

(
T ≤ |0.9947− 1|

0.3831/
√

14058.9097

)]

= 2 [1− P (T ≤ 1.640361)] where T ∼ t (19)

= 0.1174 calculated using R

Since p−value > 0.1, there is no evidence against H0 : β = 1 based on the data.

(d) Based on this analysis we would conclude that the simpler model Y ∼ G(βxi, σ)

is an adequate model for these data as compared to the model Yi ∼ G(α+βxi, σ).

6.11 (a) The maximum likelihood estimates of α and β are

β̂ =
Sxy
Sxx

=
6175

2155.2
= 2.8652 α̂ = ȳ − β̂x̄ = 30.3869

and y = 30.3869 + 2.8652x is the equation of the fitted line.

(b) The scatterplot with fitted line and the residual plots shown in Figure 6.7. There
are a few large negative residuals but overall the model seems reasonable.
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Figure 6.7: Scatterplot and residual plots for death rate due to cirrhosis of the liver versus
wine consumption

(c) An estimate of σ is

se =

[
Syy − β̂Sxy
n− 2

]1/2

=

[
24801.1521− (2.8652) (6175.1522)

44

]1/2

= 12.7096

Since

p− value = 2

1− P

T ≤
∣∣∣β̂ − 0

∣∣∣
se/
√
Sxx

 = 2 [1− P (T ≤ 10.47)] ≈ 0

there is very strong evidence based on the data against H0 : β = 0. The data
suggest that there is a linear relationship between wine consumption per capita
and the death rate from cirrhosis of the liver.

(d) Since P (T ≤ 2.0154) = 0.975 where T ∼ t (44) a 95% confidence interval for β is

2.8652± 2.0154 (12.7096) /
√

2155.1522 = [2.3135, 3.4171]

6.12 (a) The command summary(RegModel)$coeffi cients gives the output:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.16113913 0.005428554 213.8947 1.283890e-123

x -0.06206624 0.003353336 -18.5088 1.954991e-32
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The fitted line is y = 1.16113913− 0.06206624x where y = BodyDensity and
x = Skinfold.

(b) For the hypothesis H0 : β = 0 the value of the test statistic is −18.5088 and the
p − value is 1.954991 × 10−32 or approximately 0. Since p − value ≈ 0 there
is very strong evidence based on the data against the hypothesis H0 : β = 0.
Since the plots in (d) suggest the simple linear regression model is reasonable,
therefore the data suggest there is a linear relationship between body density
and skinfold measurement.

(c) An estimate of σ is se = 0.007877322.

(d) The plots are given in Figure 6.8. The scatterplot and residual plots indicate
that the model fits the data well.
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Figure 6.8: Fitted Line and Residual Plots for Skinfold Data
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(e) From the R output
> # 95% Confidence interval for slope

> confint(RegModel,level=0.95)

2.5 % 97.5 %

(Intercept) 1.15035436 1.17192390

x -0.06872823 -0.05540425

the 95% confidence interval for β is [−0.06872823,−0.05540425].

(f) From the R output
> # 90% confidence interval for mean response at x=2

> predict(RegModel,data.frame("x"=2),interval="confidence",level=0.90)

fit lwr upr

1 1.037007 1.034394 1.03962

the 90% confidence interval for the mean body density for a skinfold measure-
ment of 2 is [1.034394, 1.03962]

(g) From the R output
> # 99% prediction interval for response at x=1.8

> predict(RegModel,data.frame("x"=1.8),interval="prediction",level=0.99)

fit lwr upr

1 1.04942 1.028503 1.070336

a 99% prediction interval for the body density of a male with skinfold measure-
ment of x = 1.8 is [1.028503, 1.070336].

(h) From the R output
> a<-qchisq(0.025,df)

> b<-qchisq(0.975,df)

> int<-c(se*sqrt(df/b),se*sqrt(df/a))

> cat("95% confidence interval for sigma: ",int)

95% confidence interval for sigma: 0.006875574 0.009223456

the 95% confidence interval for σ is [0.006875574, 0.009223456]

(i) Skinfold measurements seem to provide a reasonable approximation to body
density measurements. However we notice that the range of body density mea-
surements is [1.0126, 1.1171] with a width of 0.1045 and that the 99% prediction
interval for the body density of a male with skinfold measurement of x = 1.8

has width 0.041833 which is approximately one third the width of the range
of measurements. There is a fair bit of uncertainty in approximating the body
density using the skinfold measurement. The decision to use the approximation
or not would depend on issues such as what the body density measurement is
to be used for and how accurate it needs to be and how much more cost and
effort is required to measure body density directly. Note that an accurate body
density measurement is usually done by weighing a person under water.
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6.13 (a)
x̄ = 191.7871 ȳ = 20.0276

Sxx = 2291.3148 Syy = 447.8497 Sxy = 1008.8246

β̂ =
Sxy
Sxx

=
1008.8246

2291.3148
= 0.44028

α̂ = ȳ − β̂x̄ = 20.0276−
(

1008.8246

2291.3148

)
(191.7871) = −64.4128

The fitted line is y = −64.4128 + 0.44028x. The scatterplot and residual plot
are given in the top two panels of Figure 6.9. Both graphs show a distinctive
pattern. In the scatterplot as x increases the points lie above the line, then below
then above. Correspondingly in the residual plot as x increases the residuals are
positive then negative then positive. In the residual plot the points do not lie
in a horizontal about the line r̂i = 0 which suggests that the linear model is not
adequate.
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Figure 6.9: Fitted lines and residual plots for atmospheric pressure data

(b)
x̄ = 191.7871 ȳ = 2.9804

Sxx = 2291.3148 Syy = 1.00001 Sxy = 47.81920

β̂ =
Sxy
Sxx

=
47.81920

2291.3148
= 0.02087

α̂ = ȳ − β̂x̄ = 2.9804−
(

47.81920

2291.3148

)
(191.7871) = −1.02214
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The fitted line is z = −1.02214 + 0.02087x. The scatterplot and residual plots
are given in the bottom two panels of Figure 6.9. In both of these plots we do
not observe any unusual patterns. There is no evidence to contradict the linear
model for log(pressure) versus temperature.

(c) Based on the scatterplots and residual plots in Figure 6.9 it is clear that the model
log(pressure) versus temperature is a much better fit than the model pressure
versus temperature. Although the model log(pressure) versus temperature is a
good fit to the data this does not “prove” that the theory’s model is correct -
only that there is no evidence to disprove it.

(d) Since P (T ≤ 2.0452) = 0.975 where T ∼ t (29), and

se =

(
Syy − β̂Sxy
n− 2

)1/2

=

[
1.00001− (0.02087) (47.81920)

29

]1/2

= 0.00838894

a 95% confidence interval for the mean log atmospheric pressure at a temperature
of x = 195 is

−1.02214 + (0.02087) (195)± 2.0452 (0.008389)

[
1

31
+

(195− 191.7871)2

2291.3148

]1/2

= 3.04747± 0.00329 = [3.04418, 3.05076]

which implies a 95% confidence interval for the mean atmospheric pressure at a
temperature of x = 195 is

[exp (3.04418) , exp (3.05076)] = [20.9927, 21.1313]

6.14 (a) We assume that the study population is the set of all Grade 3 students who
are being taught the same curriculum. (For example in Ontario all Grade 3
students must be taught the same Grade 3 curriculum set out by the Ontario
Government.) The parameter µ1 represents the mean score on the DRP test
if all Grade 3 students in the study population took part in the new directed
readings activities for an 8-week period.
The parameter µ2 represents the mean score on the DRP test for all Grade 3
students in the study population without the directed readings activities.
The parameter σ represents the standard deviation of the DRP scores for all
Grade 3 students in the study population which is assumed to be the same
whether the students take part in the new directed readings activities or not.

(b) The qqplot of the responses for the treatment group and the qqplot of the re-
sponses for the control group are given in Figures 6.10 and 6.11. Looking at these
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Figure 6.10: Normal Qqplot of the Responses for the Treatment Group

plots we see that the points lie reasonably along a straight line in both plots and
so we would conclude that the normality assumptions seem reasonable.

(c) For the given data

sp =

[
1

21 + 23− 2
(2423.2381 + 6469.7391)

]1/2

= 14.5512

Also P (T ≤ 2.018) = 0.975 where T ∼ t (42). A 95% confidence interval for the
difference in the means, µ1 − µ2 is

51.4762− 41.5217± (2.018) (14.5512)

√
1

21
+

1

23
= 9.9545± 8.8628 = [1.0916, 18.8173]

(d) To test the hypothesis of no difference between the means, that is, to test the
hypothesis H0 : µ1 = µ2 we use the discrepancy measure

D =

∣∣Ȳ1 − Ȳ2 − 0
∣∣

Sp

√
1
n1

+ 1
n2

where

T =
Ȳ1 − Ȳ2 − 0

Sp

√
1
n1

+ 1
n2

∼ t (n1 + n2 − 2)

assuming H0 : µ1 = µ2 is true. The observed value of D for these data is

d =
|ȳ1 − ȳ2 − 0|
sp

√
1
n1

+ 1
n2

=
|51.4762− 41.5217− 0|

14.5512
√

1
21 + 1

23

= 2.2666
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Figure 6.11: Normal Qqplot for the Responses in the Control Group

and

p− value = 2 [1− P (T ≤ 2.2666)] where T ∼ t (42)

= 0.02863 calculated using R

Since 0.01 < p − value < 0.05, there is evidence against H0 : µ1 = µ2 based on
the data.
Although the data suggest there is a difference between the treatment group and
the control group we cannot conclude that the difference is due to the
the new directed readings activities. The difference could simply be due to
the differences in the two Grade 3 classes. Since randomization was not used to
determine which student received the treatment and which student was in the
control group, the difference in the DRP scores could have existed before the
treatment was applied.

(e) Here is the output from running t.test in R
> # t test for hypothesis of no difference in means
> # and 95% confidence interval for mean difference mu
> # note that R uses mu = mu_control - mu_treament
> t.test(DRP~Group,data=treatmentvscontroldata,var.equal=TRUE,conf.level=0.95)

Two Sample t-test

data: DRP by Group
t = -2.2666, df = 42, p-value = 0.02863
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
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-18.817650 -1.091253
sample estimates:
mean in group Control mean in group Treatment
41.52174 51.47619

6.15 (a) The pooled estimate of variance is

sp =

√
209.02961 + 116.7974

18
= 4.25

From the t table, P (T < 1.734) = 0.95 where T ∼ t (18). The 90% confidence
interval is

10.693− 6.750± 1.734 (4.25)

√
1

n1
+

1

n2
= [0.647, 7.239]

(b) We test the hypothesis H0 : µ1 = µ2 or equivalently H0 : µ1 − µ2 = 0 using the
discrepancy measure

D =
|Ȳ1 − Ȳ2|

Sp

√
1
n1

+ 1
n2

The observed value of this statistic is

d =
|10.693− 6.750|

4.25
√

1
10 + 1

10

= 2.074

with

p− value = 2 [1− P (T ≤ 2.074)] where T ∼ t(18)

= 0.0527 calculated using R

Since 0.05 < p − value < 0.1, there is weak evidence against H0 : µ1 − µ2 = 0

based on the data.

(c) We repeat the above using as data zij = log(yij). The sample means are 2.248,
1.7950 and the sample variances are 0.320, 0.240 respectively. The pooled es-

timate of variance is sp =
√

0.320+0.240
2 = 0.529. The observed value of the

discrepancy measure is

d =
|2.248− 1.795− 0|

0.529
√

1
10 + 1

10

= 1.9148

with

p− value = 2 [1− P (T ≤ 1.9148)] where T ∼ t(18)

= 0.0715 calculated using R

Since 0.05 < p − value < 0.1, there is evidence against H0 : µ1 − µ2 = 0 based
on the data.
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(d) One could check the Normality assumption with qqplots for each of the variates
yij and zij = log(yij) although with such a small sample size these will be diffi cult
to interpret.

6.16 (a) The pooled estimate of the common standard deviation σ is

sp =

√
3050 + 2937

58
= 10.1599

Using R, P (T ≤ 2.0017) = 0.975 where T ∼ t (58). The 95% confidence interval
for µ1 − µ2 is

120− 114± 2.0017 (10.1599)

√
1

30
+

1

30
= 6± 5.2511 = [0.7489, 11.2511]

(b) Since

d =
|120− 114− 0|

10.1599
√

1
30 + 1

30

= 2.2872

with

p− value = 2 [1− P (T ≤ 2.2872)] where T ∼ t(58)

= 0.0259 calculated using R

Since 0.01 < p − value < 0.05, there is evidence against the hypothesis of no
difference based on the data. This is consistent with the fact that the 95%

confidence interval for µ1 − µ2 did not contain the value µ1 − µ2 = 0.

6.17 Let µ1 be the mean log failure time for welded girders and µ2 be the mean score
for log failure time for repaired welded girders. The pooled estimate of the common
standard deviation σ is

sp =

√
13 (0.0914) + 9 (0.0422)

22
= 0.26697

From the t table, P (T < 2.0739) = 0.975 where T ∼ t (22). The 95% confidence
interval for µ1 − µ2 is

14.564− 14.291± 2.0739 (0.26697)

√
1

14
+

1

10
= 0.273± 0.22924 = [0.04376, 0.50224]

Since

d =
|14.564− 14.291− 0|

0.26697
√

1
14 + 1

10

= 2.4698

with

p− value = 2 [1− P (T ≤ 2.4698)] where T ∼ t(22)

= 0.02175 calculated using R
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Since 0.01 < p−value < 0.05, there is evidence against the hypothesis of no difference
based on the data. This is consistent with the fact that the 95% confidence interval
for µ1 − µ2 did not contain the value µ1 − µ2 = 0.

6.18 (a) For the female coyotes we have

ȳf = 89.24, s2
f = 42.87887, nf = 40

For the male coyotes we have

ȳm = 92.06, s2
m = 44.83586, nm = 43

Since nf = 40 and nm = 43 are reasonably large we have that Ȳf has approxi-
mately a N (89.24, 42.87887/40) distribution and Ȳm has approximately a
N (92.06, 44.83586/43) distribution. An approximate 95% confidence interval for
µf − µm is given by

89.24− 92.06± 1.96

√
42.87887

40
+

44.83586

43
= [−5.67, 0.03]

The value µf−µm = 0 is just inside the right hand endpoint and the p−value for
testing H0 : µf − µm = 0 would be close to 0.05 so there is weak evidence based
on the data of a difference between mean length for male and female coyotes.
Since the interval contains mostly negative values the data suggest the mean
length for males is slightly larger than for females.

(b) Using Y1 ∼ N (89.24, 42.87887), Y2 ∼ N (92.06, 44.83586) and
Y1 − Y2 ∼ N (89.24− 92.06, 42.87887 + 44.83586) or
Y1 − Y2 ∼ N (−2.82, 87.71473) we estimate P (Y1 > Y2) = P (Y1 − Y2 > 0) as

P

(
Z >

0− (−2.82)√
87.71473

)
= 1− P (Z ≤ 0.30) = 1− 0.61791 = 0.38209

(c) Since P (T ≤ 2.0227) = 0.975 where T ∼ t (39) a 95% confidence interval the
mean length of female coyotes is

89.24± 2.0227
√

42.87887/40 = 89.24± 2.0942 = [87.1457, 91.3342]

Since P (T ≤ 2.0181) = 0.975 where T ∼ t (42) a 95% confidence interval the
mean length of male coyotes is

92.06± 2.0181
√

44.83586/43 = 92.06± 2.06073 = [89.9993, 94.1207]

6.19 The pooled estimate of the common standard deviation is

sp =

√
0.608 + 0.35569

22
= 0.2093
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Since P (T ≤ 2.0739) = 0.975 where T ∼ t (22), a 95% confidence interval for µ1 − µ2

is

1.370− 1.599± 2.0739 (0.2093)

√
1

12
+

1

12
= [−0.4064,−0.0520]

This interval does not contain µ1 − µ2 = 0 and only contains negative values. The
data suggest that µ1 < µ2, that is, the mean reaction time for the “Alcohol”group
is less than the mean reaction time for the “Non-Alcohol” group. We are not told
the units of these reaction times so it is unclear whether this difference is of practical
significance.

6.20 (a) We assume that the observed differences are a random sample from a G (µ, σ)

distribution. An estimate of σ is

s =

√
17.135

7
= 1.5646

Since P (T ≤ 2.3646) = 0.975 where T ∼ t (7), a 95% confidence interval for µ is

1.075± 2.3646 (1.5646) /
√

8 = 1.075± 1.3080 = [−0.2330, 2.3830]

(b) If the natural pairing is ignored an estimate of the common standard deviation
is

sp =

√
535.16875 + 644.83875

14
= 9.18075

Since P (T ≤ 2.1448) = 0.975 where T ∼ t (14), a 95% confidence interval for
µ1 − µ2 is

23.6125− 22.5375± 2.1448 (9.18075)

√
1

8
+

1

8
= [−8.7704, 10.9204]

We notice that although both intervals in (a) and (b) are centered at the value
1.075, the interval in (b) is very much wider.

(c) A matched pairs study allows for a more precise comparison since differences
between the 8 pairs have been eliminated. That is by analyzing the differences
we do not need to worry that there may have been large differences in the 8 cars
which were used in the study with respect to other explanatory variates which
might affect gas mileage (the response variate) such as size of engine, make of
car, etc.

6.21 (a) We assume that the study population is the set of all factories of similar size.
The parameter µ represents the mean difference in the number of staff hours per
month lost due to accidents before and after the introduction of an industrial
safety program in the study population.
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(b) For these data

s =

[
1

7
(1148.79875)

]1/2

= 12.8107

From the t table P (T ≤ 2.3646) = 0.975 where T ∼ t (7). A 95% confidence
interval for µ is

−15.3375±2.364624 (12.8107) /
√

8 = −15.3375±10.71002 = [−26.04752,−4.627484]

(c) The observed discrepancy measure is

d =
|ȳ − 0|
s/
√
n

=
|−15.3375− 0|

12.8107/
√

8
= 3.386309

and

p− value = 2 [1− P (T ≤ 3.386309)] where T ∼ t (7)

= 0.01166 calculated using R

Since the 0.01 < p − value < 0.05 there is evidence against the hypothesis
H0 : µ = 0 based on the data.
Since this experimental study was conducted as a matched pairs study, an analy-
sis of the differences, yi = y1ii − y2i, allows for a more precise comparison since
differences between the 8 pairs have been eliminated. That is by analyzing the
differences we do not need to worry that there may have been large differences
in the safety records between factories due to other variates such as differences
in the management at the different factories, differences in the type of work be-
ing conducted at the factories etc. Note however that a drawback to the study
was that we were not told how the 8 factories were selected. To do the analysis
above we have assumed that the 8 factories are a random sample from the study
population of all similar size factories but we do not know if this is the case.

6.23 (a) Since two algorithms are each run on the same 20 sets of numbers we analyse
the differences yi = yAi − yBi, i = 1, 2, . . . , 20. Since P (T < 2.8609) = 0.995

where T ∼ t (19), we obtain the confidence interval

0.409± 2.8609 (0.487322) /
√

20 = [0.097, 0.721]

These values are all positive indicating strong evidence based on the data against
H0 : µA − µB = 0 (p− value < 0.01), that is, the data suggest that algorithm B
is faster.

(b) To check the Normality assumption we plot a qqplot of the differences. See Figure
6.12. The data lie reasonably along a straight line and therefore a Normal model
is reasonable.
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Figure 6.12: Qqplot for sorting algorithm data.

(c) We can estimate the probability by using the fact that YA − YB ∼ G(µ, σ). We
estimate the parameters using µ̂ = 0.40 and s = 0.487322. Since

P (YA > YB) = P (YA − YB > 0) = P

(
Z >

0− 0.409

0.487322

)
= P (Z > −0.84) = P (Z < 0.84) = 0.80 where Z ∼ N (0, 1)

an estimate of the probability that algorithm B sorts a randomly selected list
faster than A is 0.80.

(d) An estimate of p is p̂ = 15/20 = 0.75 and an approximate 95% is given by

p̂± 1.96

√
p̂ (1− p̂)

n
= 0.75± 1.96

√
0.75 (0.25)

20
or [0.56, 0.94]

(e)

sp =

√
1.4697 + 0.9945

2
= 1.1100

Using R we have P (T < 2.7116) = (1 + 0.99)/2 = 0.995 where T ∼ t(38). The
interval, assuming common variance, is

ȳ1 − ȳ2 ± asp
√

1

20
+

1

20
= 0.409± 2.7116(1.1100)

√
1

20
+

1

20

or
[−0.543, 1.361]

This second interval [−0.543, 1.361] is much wider than the first interval [0.097, 0.721]

biased on the paired experiment and unlike the first interval, it contains the value
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zero. Unlike the paired design, independent samples of the same size (20 different
problems run with each algorithm) is too small to demonstrate the superiority
of algorithm B. The independent samples is a less effi cient way to analyse the
difference. This is why in computer simulations, it is essential to be able to run
different simulations using the same random number seed.

(f) Here is the R output for doing the t tests and confidence intervals for the paired
analysis and the unpaired analysis:
> t.test(Time~Algorithm,data=sortingdata,paired=TRUE,conf.level=0.99)

Paired t-test

data: Time by Algorithm
t = 3.7534, df = 19, p-value = 0.001346
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
0.09724793 0.72075207
sample estimates:
mean of the differences
0.409

t.test(Time~Algorithm,data=sortingdata,paired=F,var.equal=T,conf.level=0.99)

Two Sample t-test

data: Time by Algorithm
t = 1.1652, df = 38, p-value = 0.2512
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
-0.5427918 1.3607918
sample estimates:
mean in group A mean in group B
4.7375 4.3285
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7.1 Here is the R output
> y<-c(556,678,739,653,725,714,566,797) # observed frequencies

> e<-sum(y)/8 # expected frequencies

> lambda<-2*sum(y*log(y/e)) # observed value of LR statistic

> lambda

[1] 74.10284

> df<-7 # degrees for freedom for this example equal 7

> 1-pchisq(lambda,df) # p-value for LR test

[1] 2.181588e-13

> d<-sum((y-e)^2/e) # observed value of Pearson goodness of fit statistic

> d

[1] 72.86367

> 1-pchisq(d,df) # p-value for Pearson goodness of fit test

[1] 3.890221e-13

In both cases there is very strong evidence against the hypothesis that the distribution
of colours is uniform.

7.2 From Table 2.3 in the Course Notes we have the observed frequencies and the expected
frequencies calculated using the Poisson model with the mean θ estimated by the
sample mean θ̂ = 3.8715. In order to use the χ2 approximation the last four classes
have been combined so that the expected frequency in all classes is at least 5. The
observed value of the likelihood ratio statistic is

2
12∑
j=1

fj log

(
fj
ej

)
= 2

[
57 log

(
57

54.31

)
+ 203 log

(
203

210.28

)
+ · · ·+ 6 log

(
6

5.80

)]
= 14.01

(remember log = ln). Note that this value has been calculated using the expected
frequencies calculated in R and not the rounded frequencies displayed in the table.

145
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There are 12 rows in the table so k = 12. There is only one unknown parameter θ
to be estimated under the hypothesized Poisson(θ) model so p = 1. The degrees of
freedom for the Chi-squared approximation equal k − 1− p = 12− 1− 1 = 10.

Number of α-
particles detected: j

Observed
Frequency: fj

Expected
Frequency: ej

0 57 54.31

1 203 210.28

2 383 407.06

3 525 525.31

4 532 508.44

5 408 393.69

6 273 254.03

7 139 140.50

8 45 67.99

9 27 29.25

10 10 11.32

≥ 11 6 5.80

Total 2608 2607.98

Since

p− value = P (Λ ≥ 14.01;H0) ≈ P (W ≥ 14.01) where W ∼ χ2 (10)

= 0.1725 calculated using R

> 0.1

there is no evidence against the Poisson model based on the observed data.
The observed value of the goodness of fit statistic is

12∑
j=1

(fj − ej)2

ej
=

(57− 54.3)2

54.31
+

(203− 210.3)2

210.28
+ · · ·+ (6− 5.80)2

5.80
= 12.96

and

p− value = P (Λ ≥ 12.96;H0)

≈ P (W ≥ 12.96) where W ∼ χ2 (10)

= 0.2259 > 0.1 calculated using R

so again there is no evidence against the Poisson model based on the observed data.

Here is R code to do this analysis using the likelihood ratio statistic:
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th<-10097/2608 # estimate of theta = mean interruption time

# observed frequencies for collapsed table

f<-c(57,203,383,525,532,408,273,139,45,27,10,6)

# expected frequencies based on Poisson model

e<-2608*c(dpois(0:10,th),1-ppois(10,th))

lambda<-2*sum(f*log(f/e)) # observed value of LR statistic

pvalue<-1-pchisq(lambda,3) # p-value for LR test

c(lambda,pvalue)

7.3 The table below contains the observed and expected frequencies for the data for
Wayne Gretzky from Chapter 2, Problem 10. The categories 7 and ≥ 8 have been
combined to obtain an expected frequency of at least five.

Number of Points
in a Game: y

Observed Number of
Games with y points: fy

Expected Number of
Games with y points: ey

0 69 63.27

1 155 151.71

2 171 181.90

3 143 145.40

4 79 87.17

5 57 41.81

6 14 16.71

≥ 7 8 8.04

Total 696 696

The observed value of the likelihood ratio statistic is λ = 7.491 and the approximate
p−value is P (W > 7.491) = 0.2778 whereW ∼ χ2 (6), so there is no evidence against
the Poisson model based on the observed data.

7.4 The table below contains the observed and expected frequencies for the data for
Sidney Crosby from Chapter 2, Problem 11. The categories 5 and ≥ 6 have been
combined to obtain an expected frequency of at least five.

Number of Points
in a Game: y

Observed Number of
Games with y points: fy

Expected Number of
Games with y points: ey

0 219 210.93

1 259 276.66

2 185 181.43

3 90 79.32

4 24 26.01

≥ 5 6 8.65

Total 783 783
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The observed value of the likelihood ratio statistic is λ = 3.971 and the approximate
p− value is P (W > 3.971) = 0.4099 where W ∼ χ2 (4), so based on the data there is
no evidence against the Poisson model.

7.5 (a) The total number of defectives among the 250× 12 = 3000 items inspected is

80× 1 + 31× 2 + 19× 3 + 11× 4 + 5× 5 + 1× 6 = 274

and the maximum likelihood estimate of θ = the proportion of defectives is

θ̂ =
274

3000
= 0.09133

We want to test the hypothesis that the number of defectives in a box is Binomial(12, θ).
Under this hypothesis and using θ̂ = 0.091333 we obtain the expected numbers
in each category

Number of
defective

0 1 2 3 4 5 ≥ 6 Total

ei 79.21 95.54 52.82 17.70 4 0.64 0.08 250

where

ei = 250

(
12

i

)
θ̂
i
(1− θ̂)12−i for i = 0, 1, . . . , 5

and the last category is obtained by subtraction. Since the expected numbers in
the last three categories are all less than 5 we pool these categories to improve
the Chi-squared approximation and obtain

Number of
defective

0 1 2 3 ≥ 4 Total

fi (ei) 103(79.21) 80(95.54) 31(52.82) 19(17.7) 17(4.72) 250

The observed value of the likelihood ratio statistic is

2

[
103 log

(
103

79.21

)
+ 80 log

(
80

95.54

)
+ · · ·+ 17 log

(
17

4.72

)]
= 38.8552

(Remember log = ln.) Under the null hypothesis we had to estimate the pa-
rameter θ. The degrees of freedom are 4 − 1 = 3. The approximate p − value
is P (W > 38.8552) ≈ 0 where W ∼ χ2 (3), so based on the data there is very
strong evidence that the Binomial model does not fit.

(b) The likely reason that the Binomial model does not fit well is that defects usually
occur in batches which would result in more cartons with no defects than one
would expect.
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7.6 (a) Here is the R code and output for this problem:

> y<-c(70,75,63,59,81,92,75,100,63,58) # observed frequencies

> e<-sum(y)/10 # expected frequencies

> df<-9 # degrees of freedom = 10-1 = 9

> # Likelihood Ratio Goodness of Fit Test

> lambda<-2*sum(y*log(y/e))

> pvalue<-1-pchisq(lambda,df)

> c(lambda,pvalue)

[1] 23.604947153 0.004971575

> # Pearson goodness of fit statistic

> d<-sum((y-e)^2/e)

> pvalue<-1-pchisq(d,df)

> c(d,pvalue)

[1] 24.298913043 0.003852929

Since the p − value < 0.01 there is strong evidence based on the data against
the hypothesis that the machine is operating in a truly “random”fashion.

(b) Let Λi be the likelihood ratio statistic for testing H0 : θj = 0.1, j = 1, 2, . . . , 9

for position i, i = 1, 2, . . . , 6. To test the hypothesis H0 : θj = 0.1, j = 1, 2, . . . , 9

for all positions we could use the test statistic D = max
1≤i≤6

Λi (Why does this

make sense?). For these data we have from (a) that the observed value of D is
d = 23.60494715. Therefore

p− value = P (D ≥ 23.605)

= P

(
max
1≤i≤6

Λi ≥ 23.605

)
= 1− P

(
max
1≤i≤6

Λi ≤ 23.605

)
= 1− P (Λ1 ≤ 23.605,Λ2 ≤ 23.605, . . . ,Λ6 ≤ 23.605)

= 1− P (Λ1 ≤ 23.605)P (Λ2 ≤ 23.605) · · ·P (Λ6 ≤ 23.605)

since Λ1,Λ2, . . . ,Λ6 are independent random variables

≈ 1− (1− 0.004971575)6

= 0.02946115

Since p − value ≈ 0.029 < 0.05 there is evidence based on the data against the
hypothesis that all six machines are operating in a truly random fashion.

7.7 (a) This process can be thought of as an experiment in which we observe
yi = the number of non-zero digits (Failures) until the first zero (Success) for
i = 1, 2, . . . , 50 and P (Success) = 0.1. Therefore the Geometric(0.1) distribution
is an appropriate model for these data.
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(b) The data in a frequency table are:

# between 2 zeros 0 1 2 3 4 5 6 7 8 10 12

# of occurrences 6 4 9 3 5 2 2 3 2 2 1

# between 2 zeros 13 14 15 16 18 19 20 21 22 26

# of occurrences 1 1 1 1 1 1 1 1 2 1

The expected frequencies are

ej = 50 (0.1) (1− 0.1)j , j = 0, 1, . . . .

To obtain expected frequencies of at least five we join adjacent categories to
obtain:

Observation

between two 0’s
0 1 2− 3 4− 5 6− 7 8− 10 ≥ 11 Total

Observed

Frequency.: fj
6 4 12 7 5 4 12 50

Expected

Frequency.: ei
5 4.5 7.695 6.233 5.049 5.833 15.691 50

The observed value of the likelihood ratio statistic is λ = 3.984. The degrees of
freedom for the Chi-squared approximation are 7− 1 = 6. Since

p− value ≈ P (W ≥ 3.984) where W ∼ χ2 (6)

≈ 0.68 > 0.1

there is no evidence based on the data against the hypothesis that the Geometric(0.1)

distribution is a good model for these data.

7.8 (a) For n = 2, the likelihood function is

L2 (θ2) =

[(
2

0

)
(1− θ2)2

]23 [(2

1

)
θ2 (1− θ2)

]44 [(2

2

)
θ2

2

]13

for 0 < θ2 < 1

or more simply

L2 (θ2) = (1− θ2)2(23) θ44
2 (1− θ2)44 θ

2(13)
2 = θ70

2 (1− θ2)90 for 0 < θ2 < 1

which is maximized for
θ̂2 =

70

160
= 0.4375

For n = 3

L3 (θ3) = (1− θ3)3(10) θ25
3 (1− θ3)2(25) θ

2(48)
3 (1− θ3)1(48) θ

3(13)
3

= θ160
3 (1− θ3)128 for 0 < θ3 < 1
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which is maximized for
θ̂3 =

160

288
= 0.5556

For n = 4

L4 (θ4) = (1− θ4)4(5) θ30
4 (1− θ4)3(30) θ

2(34)
4 (1− θ3)2(34)

×θ3(22)
4 (1− θ4)1(22) θ

4(5)
4

= θ184
4 (1− θ4)200 for 0 < θ4 < 1

which is maximized for
θ̂4 =

184

384
= 0.4792

The expected frequencies assuming the Binomial model, are calculated using

enj = yn+

(
n

j

)
θ̂
j

n

(
1− θ̂n

)n−j
for j = 0, 1, . . . , n; n = 2, 3, 4

and are given below:

Number of females = j

Total
number
of litters

enj 0 1 2 3 4 yn+

Litter 2 25.3125 39.375 15.3125 80

Size = n 3 8.4280 31.6049 39.5062 16.4609 96

4 7.0643 25.9964 35.8751 22.0034 5.0608 96

For n = 2 the observed value of the likelihood ratio statistic is

2

[
23 log

(
23

25.3125

)
+ 44 log

(
44

39.375

)
+ 13 log

(
13

15.3125

)]
= 1.11

The degrees of freedom are 3− 1− 1 = 1 since θ2 was estimated. Since

p− value ≈ P (W ≥ 1.11) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
1.11

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 1.05)]

= 0.29220 > 0.1

there is no evidence based on the data against the Binomial model. Similarly
for n = 3, we obtain λ = 4.22 and P (W ≥ 4.22) = 0.12 where W ∼ χ2 (2)

and there is no evidence based on the data against the Binomial model. For
n = 4, λ = 1.36 and P (W ≥ 1.36) = 0.71 where W ∼ χ2 (3) and there is also no
evidence based on the data against the Binomial model.



152 SOLUTIONS TO CHAPTER 7 PROBLEMS

(b) The likelihood function for θ1, θ2, θ3, θ4 is

L (θ1, θ2, θ3, θ4) = θ12
1 (1− θ1)8 θ70

2 (1− θ2)90 θ160
3 (1− θ3)128 θ184

4 (1− θ4)200

for 0 < θn < 1; n = 1, 2, 3, 4

Under the hypothesis H0 : θ1 = θ2 = θ3 = θ4 = θ the likelihood function is

L (θ) = θ12 (1− θ)8 θ70 (1− θ)90 θ160 (1− θ)128 θ184 (1− θ)200

= θ12+70+160+184 (1− θ)8+90+128+200

= θ426 (1− θ)426 for 0 < θ < 1

which is maximized for θ̂ = 426
852 = 0.5. The expected frequencies, assuming H0

are calculated using

enj = yn+

(
n

j

)
(0.5)n for j = 0, 1, . . . , n; n = 2, 3, 4

and are given below:

Number of females = j Total number
enj 0 1 2 3 4 of litters = yn+

Litter 1 10 10 20

Size = n 2 20 40 20 80

3 12 36 36 12 96

4 6 24 36 24 6 96

The observed value of the likelihood ratio statistic is

2

[
8 log

(
8

10

)
+ 12 log

(
12

10

)
+ · · ·+ 22 log

(
22

24

)
+ 5 log

(
5

6

)]
= 14.27

The degrees of freedom for the Chi-squared approximation equal
[(2− 1) + (3− 1) + (4− 1) + (5− 1)]− 1 = 9. Since

p− value ≈ P (W ≥ 14.27) where W ∼ χ2 (9)

= 0.113 calculated using R

> 0.1

there is no evidence based on the data against the hypothesis θ1 = θ2 = θ3 = θ4.

7.9 The observed frequencies are:

yij Tall wife Medium wife Short wife Total
Tall husband 18 28 19 65

Medium husband 20 51 28 99

Short husband 12 25 9 46

Total 50 104 56 210
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The expected frequencies are:

eij Tall wife Medium wife Short wife Total
Tall husband 65×50

210 = 15.476 65×104
210 = 32.191 17.333 65

Medium husband 99×50
210 = 23.571 99×50

210 = 49.029 26.400 99

Short husband 10.952 22.781 12.267 46

Total 50 104 56 210

The observed value of the likelihood ratio statistic is

λ = 2[18 log

(
18

15.476

)
+ 28 log

(
28

32.191

)
+ 19 log

(
19

17.333

)
+20 log

(
20

23.571

)
+ 51 log

(
51

49.029

)
+ 28 log

(
28

26.400

)
+12 log

(
12

10.952

)
+ 25 log

(
25

22.781

)
+ 9 log

(
9

12.267

)
]

= 3.1272

The degrees of freedom for the Chi-squared approximation are (3 − 1)(3 − 1) = 4.
Since

p− value ≈ P (W ≥ 3.1272) where W ∼ χ2 (4)

= 0.5368 calculated using R

> 0.1

there is no evidence based on the data against the hypothesis that the heights of
husbands and wives are independent.

7.10 (a) The expected frequencies are:

yij (eij) Both Mother Father Neither Total
Above Average 30×50

100 = 15 16×50
100 = 8 18×50

100 = 9 18 50

Below Average 15 8 9 18 50

Total 30 16 18 36 100

The observed value of the likelihood ratio statistic is λ = 10.8. The degrees of
freedom for the Chi-squared approximation are (4− 1) (2− 1) = 3 and

p− value ≈ P (W ≥ 10.8) where W ∼ χ2 (3)

= 0.013 calculated using R

Since 0.01 < p − value < 0.05, there is evidence based on the data against the
hypothesis that birth weight is independent of parental smoking habits.
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(b) The expected frequencies depending on whether the mother is a smoker or non-
smoker are:

Mother smokes
eij Father smokes Father non-smoker Total

Above average 30×15
46 = 9.78 5.22 15

Below average 20.22 10.78 31

Total 30 16 46

Mother non-smoker
yij (eij) Father smokes Father non-smoker Total

Above average 18×35
54 = 11.67 23.33 35

Below average 6.33 12.67 19

Total 18 36 54

For the Mother smokes table, the observed value of the likelihood ratio statistic
is λ = 0.2644. The degrees of freedom for the Chi-squared approximation are
(2− 1) (2− 1) = 1 and

p− value ≈ P (W ≥ 0.2644) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
0.2644

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 0.51)] = 0.60710

For the Mother non-smoker table, the observed value of the likelihood ratio sta-
tistic is λ = 0.04078. The degrees of freedom for the Chi-squared approximation
equal (2− 1) (2− 1) = 1 and

p− value ≈ P (W ≥ 0.04078) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
0.04078

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 0.20)] = 0.83997

Since p − value > 0.1 in both cases, there is no evidence based on the data
against the hypothesis that, given the smoking habits of the mother, birth weight
is independent of the smoking habits of the father.

7.11 The expected frequencies are:

Normal Enlarged Much enlarged Total
Carrier present 516×72

1398 = 26.57 589×72
1398 = 30.33 15.09 72

Carrier absent 489.43 558.67 277.91 1326

Total 516 589 293 1398
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The observed value of the likelihood ratio statistic is 7.3209 with

p− value ≈ P (W ≥ 7.3209) = 0.026 where W ∼ χ2 (2) = Exponential (2)

= e−7.3209/2 = 0.02572

Since 0.01 < p − value < 0.05, there is evidence based on the data against the
hypothesis that the two classifications are independent.

7.12 The expected frequencies are given in brackets

Employed Unemployed Total
No certificate,

diploma or degree
66 [70.984] 10 [5.016] 76

High school
diploma or equivalent

185 [187.734] 16 [13.266] 201

Postsecondary
certificate, diploma or degree

683 [675.282] 40 [47.718] 723

Total 934 66 1000

The observed value of the likelihood ratio statistic is λ = 6.1673. The degrees of
freedom for the Chi-squared approximation are (3− 1)(2− 1) = 2 and

p− value ≈ P (W ≥ 6.1673) = 0.0458 where W ∼ χ2 (2)

Since p−value < 0.05, there is evidence based on the data to contradict the hypothesis
that employment status is independent of educational level.

7.13 (a) The expected frequencies are:

eij 3 boys 2 boys 2 girls 3 girls Total

Mother under 30
29×11

64

= 4.9844

29×18
64

= 8.1563

29×22
64

= 9.96883
5.8906 29

Mother over 30 6.0156 9.8438 12.0313 7.1094 35

Total 11 18 22 13 64

The observed value of the likelihood ratio statistic is λ = 0.5587. The degrees of
freedom for the Chi-squared approximation are (4− 1)(2− 1) = 3. Since

p− value ≈ P (W ≥ 0.5587) where W ∼ χ2 (3)

= 0.9058 calculated using R

> 0.1

there is no evidence based on the data to contradict the hypothesis of no asso-
ciation between the sex distribution and age of the mother.
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(b) The expected frequencies are:

y = no. of boys 3 2 1 0 Total
Observed
Frequency

11 18 22 13
64

Expected
Frequency

64 (0.5)3

= 8

64
(

3
2

)
(0.5)3

= 24

64
(

3
1

)
(0.5)3

= 24 8
64

The observed value of the likelihood ratio statistic is λ = 5.4441. The degrees of
freedom for the Chi-squared approximation are 4− 1 = 3. Since

p− value ≈ P (W ≥ 5.4441) where W ∼ χ2 (3)

= 0.1420 calculated using R

> 0.1

there is no evidence based on the data against the Binomial(3, 0.5) model.

7.14 (a) The expected frequencies are:

eij Rust-Proofed Not Rust Proofed Total
Rust present 42×50

100 = 21 21 42

Rust absent 29 29 58

Total 50 50 100

The observed value of the likelihood ratio statistic is likelihood ratio statistic is

λ = 2

[
14 log

(
14

21

)
+ 28 log

(
28

21

)
+ 36 log

(
36

29

)
+ 22 log

(
22

29

)]
= 8.1701

with

p− value ≈ P (W ≥ 8.1701) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
8.1701

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 2.86)]

= 0.0042587

Since 0.001 < p − value < 0.01 there is strong evidence against the hypothesis
that the probability of rust occurring is the same for rust-proofed and non-rust-
proofed cars based on the observed data.

7.15 The data in a two way table are:

yij [eij ] Cold No Cold Total
Vitamin C 20 [25] 80 [75] 100

Placebo 30 [25] 70 [75] 100

Total 50 150 200
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If the probability of catching the cold is the same for each group, then an estimate
of this probability is 50

200 = 0.25. The expected frequencies and observed frequencies
are shown in the table. The original model consists of two independent Binomial
models each with their own unknown parameter. Under the null hypothesis that the
probability of catching a cold is the same for both groups the model is two independent
Binomial models with only one unknown parameter. Therefore the degrees of freedom
for the Chi-squared approximation are 2−1 = 1. The observed value of the likelihood
ratio statistic is

2

[
20 log

(
20

25

)
+ 80 log

(
80

75

)
+ 30 log

(
30

25

)
+ 70 log

(
70

75

)]
= 2.6807

Since

p− value ≈ P (W ≥ 2.68) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
2.68

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 1.64)]

= 0.10157 > 0.1

there is no evidence based on the data against the hypothesis that the probability of
catching a cold during the study period was the same for each group.

7.16 The data in a two way table are:

yij [eij ] Correct Not Correct Total
A 1328 [1333] 72 [67] 1400

B 1338 [1333] 62 [67] 1400

Total 2666 134 2800

If the probability of an error is the same for each algorithm, then an estimate of
this probability is 134

2800 = 0.0479. The expected frequencies and observed frequencies
are shown in the table. The original model consists of two independent Binomial
models each with their own unknown parameter. Under the null hypothesis that the
probability of an error is the same for both algorithms the model is two independent
Binomial models with only one unknown parameter. Therefore the degrees of freedom
for the Chi-squared approximation are 2−1 = 1. The observed value of the likelihood
ratio statistic is

2

[
1328 log

(
1328

1333

)
+ 72 log

(
72

67

)
+ 1338 log

(
1338

1333

)
+ 62 log

(
62

67

)]
= 0.7845

Since

p− value ≈ P (W ≥ 0.7845) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
0.7845

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 0.89)]

= 0.37346 > 0.1
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there is no evidence based on the data against the hypothesis that the probability of
error is the same for each algorithm.

7.17 The expected frequencies are:

eij Mon Tue Wed Thu Total

Lose
12×35

56

= 7.5

13×35
56

= 8.125

16×35
56

= 10
9.375 35

Win 4.5 4.875 6 5.625 21

Total 12 13 16 15 56

Note that two of the frequencies are just under 5, however they are close enough to 5

that we will not collapse the table. The observed value of the likelihood ratio statistic
is λ = 0.8727337. The degrees of freedom for the Chi-squared approximation are
(4− 1)(2− 1) = 3. Since

p− value ≈ P (W ≥ 0.8727337) where W ∼ χ2 (3)

= 0.8320023 calculated using R

> 0.1

there is no evidence based on the data to contradict the hypothesis that the probability
of winning is the same across the four weekdays Monday to Thursday.

7.18 (a) Under the hypothesis H0 : θ12 = θ21 = θ the likelihood function is

L (θ11, θ) = θy1111 θ
y12+y21 (1− 2θ − θ11)y22

and the log likelihood function is

l (θ11, θ) = y11 log θ11 + (y12 + y21) log θ + y22 log (1− 2θ − θ11)

Solving

∂l

∂θ11
=

y11

θ11
− y22

1− 2θ − θ11
= 0

∂l

∂θ
=

y12 + y21

θ
− 2y22

1− 2θ − θ11
= 0

gives

θ̂11 =
y11

n
, θ̂12 = θ̂21 =

y12 + y21

2n
, θ̂22 =

y22

n

(b) For the given data

θ̂11 =
1325

1400
= 0.9464, θ̂12 = θ̂21 =

16

2800
= 0.0057, θ̂22 =

59

1400
= 0.0421
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The expected frequencies under H0 are given in brackets

B

Correct Incorrect
A Correct 1325 [1325] 3 [8]

Incorrect 13 [8] 59 [59]

1400

The observed value of the likelihood ratio statistic is

2

[
0 + 3 log

(
3

8

)
+ 13 log

(
13

8

)
+ 0

]
= 6.7382

Note that the number of correct y11 and the number of incorrect y22 for both
algorithms do not affect the value of the likelihood ratio statistic. In the uncon-
strained model there were three parameters (θ11, θ12, θ21) and under H0 there
were two parameters (θ11, θ) so the degrees of freedom of the Chi-squared ap-
proximation are 3− 2 = 1.

p− value ≈ P (W ≥ 6.7382) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
6.7382

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 2.60)]

= 0.00932

Since p − value < 0.01, there is strong evidence based on the data against the
hypothesis that the probability of error is the same for each algorithm which is
a completely different conclusion compared with the experiment that was not
paired.
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SOLUTIONS TO CHAPTER 8
PROBLEMS

8.1 (a) The observed and expected frequencies (in square brackets) assuming indepen-
dence are given in the table where e11 = (3301× 28358) /50267 = 1862.25,
e12 = (3301× 15328) /50267 = 1006.57 and all other expected frequencies can
be determined by subtraction.

No. of cigarettes 0 1− 20 > 20 Total

Weight ≤ 2.5
1322

[1862.25]

1186

[1006.57]

793

[432.17]
3301

Weight > 2.5
27036

[26495.75]

14142

[14321.42]

5788

[6148.83]
46966

Total 28358 15328 6581 50267

The observed value of the likelihood ratio statistic is 480.644. Since

p− value ≈ P (W ≥ 480.644) where W ∼ χ2 (2) = Exponential (2)

≈ 0

there is very strong evidence based on the data against the hypothesis that birth
weight is independent of the mother’s smoking habits. The data suggest that
lower birth weights are associated with mothers who smoke more.

(b) Since this is an observational study, evidence of an association does not imply
a causal relationship. In particular the researchers cannot conclude that if the
mothers stopped smoking then birth weights would increase.

The researchers would need to conduct an experimental study in which they
controlled how much the mothers smoked in order to conclude that the evidence
of a relationship between mother’s smoking habits and birth weights implies a
causal relationship. Of course a study in which the researchers “controlled”the
smoking habits of the mothers would be very diffi cult to conduct.

(c) An association between the smoking habits of fathers and birth weights is to be
expected since there is probably an association between the smoking habits of the

161
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fathers and the smoking habits of the mothers. That is, the association between
the smoking habits of fathers and birth weights is a result of the association
between the smoking habits of the fathers and the smoking habits of the mothers
together with the association between the smoking habits of the mothers and
birth weights.

8.2 (a) The observed and expected frequencies (in square brackets) assuming indepen-
dence are given in the table.

Mark ≤ 80 Mark > 80 Total
Standard
Lecture

60[
75×106

150 = 53
] 15

[22]
75

CAI
46

[53]

29

[22]
75

Total 106 44 150

The observed value of the likelihood ratio statistic is 6.3874 and

p− value ≈ P (W ≥ 6.3874) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
6.3874

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 2.53)] = 0.0114

Since 0.01 < p − value < 0.05, there is evidence based on the data against
the hypothesis of independence, that is, against the hypothesis that marks are
independent of whether the student received the standard lecture or some CAI.

(b) In order to conclude that CAI increases the chances of achieving a mark over
80%, randomization of the students to either a standard lecture or to CAI would
need to have been done.

8.3 (a) The observed and expected frequencies (in square brackets) assuming indepen-
dence are given in the table.

Admitted Not Admitted Total
Male

Applicants
3738[

8442×5232
12763 = 3460.67

] 4704

[4981.33]
8442

Female
Applicants

1494

[1771.33]

2827

[2549.67]
4321

Total 5232 7531 12763

The observed value of the likelihood ratio statistic is λ = 112.398. Since

p− value ≈ P (W ≥ 112.398) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
112.398

)]
where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 10.60)] ≈ 0
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there is very strong evidence based on the data against the hypothesis of inde-
pendence, that is, against the hypothesis that whether the student is admitted
or not is independent of their sex.

(b) Only Program A shows any evidence of non-independence, and that is in the
direction of a lower admission rate for males.

(c) This is an example of Simpson’s Paradox. The association is observed in the
collapsed table since in the table broken down by program we observe that over
50% of the men applied to programs A and B which had higher admission rates
while over 50% of the women applied to programs C - F which had much lower
admission rates.

8.4 (a) Since n1 = n2 = 100 we will use the test statistic

D =

∣∣Ȳ1 − Ȳ2

∣∣√
S11
100 +

S12
100

The observed value of the test statistic

d =
|11.7− 12.0|√

(2.1)2

100 + (2.4)2

100

= 0.9407

Since

p− value ≈ P (|Z| ≥ 0.94) where Z ∼ N (0, 1)

= 2 [1− P (Z ≤ 0.94)]

= 2 [1− P (Z ≤ 0.94)]

= 0.34722 > 0.1

there is no evidence based on the data against the hypothesis of no difference
between the mean amount of rust for rust-proofed cars as compared to non-rust-
proofed cars.

(b) Since the cars were not randomly assigned to rust-proofing or not, a variate that
the manufacturer is not aware of which is not rust-proofing could have had an
effect on the results. For example, maybe the cars that were rust-proofed were
owned by drivers who lived in areas where salt is used frequently in winter and
therefore they had decided to use rust-proofing to reduce the effects of the salt.
The drivers who did not chose rust-proofing might live in areas where driving
conditions do not affect the rusting of cars. It would have been better to use
randomization to decide which of the cars received rust-proofing and which did
not. In this way the variates that affect the rusting of cars that the manufacturer
is not aware of are balanced in the two groups.
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8.5 This study is an observational study based only on data from the United States. A
causal relationship cannot be concluded only on the basis of these data. To establish
a causal relationship a strong association would need to be observed in numerous
studies in many countries. Other possible sources of confounding variates would need
to be examined in these studies to determine if they could explain the association.
A pathway by which drinking wine causes cirrhosis of the liver would need to be
established.

8.6 This is an experimental study since Hooker observed the boiling point of water at
many different elevation levels. (We don’t know how he chose these levels.) We are
assuming that his method for boiling water and for measuring water temperature and
atmospheric pressure were controlled as much as possible at the different elevations to
avoid other variates affecting the relationship. Recall that Hooker was interested in
using the boiling point of water as the explanatory variate and atmospheric pressure as
the response variate since measuring the boiling point would give travelers a quick way
to estimate elevation, using the known relationship between elevation and barometric
pressure, and the model relating pressure to boiling point. The causal relationship
actually works in the reverse direction, that is, it is atmospheric pressure which is
causing the change in the boiling point of water. This conclusion however requires an
argument based on physics. Pressure on the surface of water tends to keep the water
molecules contained. As pressure increases, water molecules need additional heat to
gain the speed necessary for escape. Lowering the pressure lowers the boiling point
because the molecules need less speed to escape.

8.7 It is important that the subject does not whether they are receiving the treatment
since if they do know they might think the treatment is working just because they
know that they are receiving a treatment (the placebo effect). It is important that
the physician not know whether the subject is receiving the treatment or not since
knowing might affect their decision about whether the treatment is working or not.



SAMPLE TESTS

Sample Midterm Test 1
1. Multiple choice questions.

(a) Which one of the following can be appropriately modeled using a Binomial model?
A: time between arrivals of buses at a bus stop
B: number of tosses needed until we get 10 Heads in total when tossing a coin
C: closing price in dollars of a stock
D: number of calls received by a call center in one hour
E: number of people in a sample drawn at random from a large population that have a

certain disease

(b) Which one of the following statements is FALSE?
A: Pie charts and bar charts are suitable for representing categorical data.
B: In a relative frequency histogram the height of each rectangle is equal to k times the

number of observations in the interval for some positive constant k.
C: The sample variance of a data set cannot be determined from a boxplot.
D: A run chart is a good way to summarize data collected over time.

(c) Which one of the following statements is FALSE?
A: L (θ) and l (θ) = logL (θ) are maximized for the same value of θ.
B: L (θ) and l (θ) = logL (θ) have the same concavity near their maximum value.
C: L (θ) and l (θ) = logL (θ) have the same shape.
D: l (θ) = logL (θ) is a one-to-one function of L (θ).

(d) Which one of the following statements is FALSE?
A: If y successes are observed in n Bernoulli trial with P (Success) = θ then the maximum

likelihood estimate of θ is θ̂ = y/n.
B: For an observed random sample y1, y2, . . . , yn from a Poisson(θ) distribution the

maximum likelihood estimate of θ is θ̂ = ȳ.
C: For an observed random sample y1, y2, . . . , yn from a Exponential(θ) distribution the

maximum likelihood estimate of θ is θ̂ = ȳ.
D: For an observed random sample y1, y2, . . . , yn from a G (µ, σ) distribution the maxi-

mum likelihood estimate of θ =
(
µ, σ2

)
is θ̂ =

(
µ̂, σ̂2

)
=

(
ȳ, 1

n−1

n∑
i=1

(yi − ȳ)2

)
.
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(e) In the graph below the empirical cumulative distribution function is graphed for two
different data sets. The observations in each data set are unique.
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Data Set 1

Data Set 2

Which one of the following statements is TRUE?

A: There are more observations in Data Set 2 than in Data Set 1.
B: All the values in both data sets are positive.
C: For Data Set 2, F̂ (5) = 0.6.
D: The skewness of Data Set 1 is negative.

(f) Suppose a and b are positive constants. The function G (θ) = θa (1− θ)b, θ > 0 is
maximized for:

A: a
a+b

B: ab
C: ba
D: b
E: None of the above.
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(g) In the figure below are boxplots for 3 different datasets. Assume all 3 datasets are
unimodal.

D a tas e t 1 D a tas e t 2 D a tes e t 3

0
2

4
6

8
10

Which one of the following statements is FALSE?

A: Dataset 3 has the smallest variability.
B: Dataset 1 is negatively skewed.
C: Dataset 3 is the most bell-shaped.
D: Dataset 2 has the largest sample median
E: Dataset 1 has the largest range.

(h) The correlation between two variates x and y can be computed in R using which of the
following commands:

A: cov(x, y)

B: cor(x, y)

C: cov(x, y)(var(x)*var(y))
D: cor(x, y)/(var(x)*var(y))
E: None of the above.
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(i) Which of the following commands in R would produce the following plot for the variate
y?

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A: ecdf(y)

B: hist(y)

C: boxplot(y)

D: plot(ecdf(y))
E: None of the above.

(j) Consider the following R console output:

fivenum(y)

[1] 0.0013 0.2805 0.6747 1.3374 8.6917

The IQR of the variate y is given by:

A: 0.6747
B: 1.0569
C: 8.6904
D: None of the above.
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2. In modelling the number of transactions of a certain type received by a central com-
puter for a company with many on-line terminals the Poisson distribution can be used. If
the transactions arrive at random at the rate of θ per minute then the probability of y
transactions in a time interval of length t minutes is

P (Y = y; θ) = f (y; θ) =
(θt)y

y!
e−θt for y = 0, 1, . . . and θ ≥ 0 (11.1)

(a) Suppose y1, y2, . . . , yn were the number of transaction recorded in n independent t = 1

minute intervals. Find the the maximum likelihood estimate of θ based on the model (11.1)
and these data. Clearly show all your steps.

(b) Suppose that for n = 200 independent t = 1 minute intervals the observed frequencies
were those given in the table below. Assuming θ = θ̂ = 2.1, complete the following table of
expected frequencies. Comment on how well the model fits the data.

0 1 2 3 4 ≥ 5 Total
Observed
Frequency

28 45 56 40 21 10 200

Expected
Frequency

12.425 200

(c) What is the maximum likelihood estimate of the probability that during a 2 minute
interval there are no transactions?

3. Suppose y1, y2, . . . , yn is an observed random sample from the G (0, σ) distribution with
probability density function

f(y;σ) =
1√
2πσ

e−y
2/(2σ2) for y ∈ < and σ > 0

(a) Find the likelihood function L(σ) and the maximum likelihood estimate σ̂ based on the
observed data y1, y2, . . . , yn. Clearly show all your steps.

(b) Show that the relative likelihood function R (σ) is given by

R (σ) =

(
σ̂

σ

)n
exp

{
n

2

[
1− (σ̂)2

σ2

]}
for σ > 0

Note: exp (x) = ex

(c) Suppose σ̂ = 1.2 for a given data set. If Y ∼ G (0, σ) then determine the maximum
likelihood estimate of P (Y > 0.3;σ).
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4. The data below are the final grades of 90 students in a second year statistics course:

99 96 95 94 94 93 93 92 92 92

91 91 91 90 90 90 89 89 88 88

88 87 87 86 86 86 86 85 85 85

85 85 84 84 84 83 83 82 82 82

82 81 81 80 80 79 79 79 78 78

77 77 77 76 76 75 75 75 74 74

73 73 72 71 71 70 70 70 69 69

68 68 68 67 66 66 65 64 64 63

61 60 59 57 54 54 53 48 47 42

For these data

90∑
i=1

yi = 6987,
90∑
i=1

y2
i = 555863, and sample kurtosis = 3.0211

A relative frequency histogram and qqplot for these data are given below:
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Figure 11.2: Relative Frequency Histogram of Final Grades
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Figure 11.3: Qqplot of Final Grades

Answer questions (a)− (e) based on the given information.

(a) The five-number summary for these data is:

, , , ,

(b) For these data:
sample mean = ȳ =

and
sample standard deviation = s =

(c) For these data the sample skewness would be (Circle the letter corresponding to your
choice.):

A: negative
B: approximately zero
C: positive
D: not enough information to tell

(d) For these data determine the proportion of observations in the interval [ȳ − s, ȳ + s].
Compare this with P (Y ∈ [µ− σ, µ+ σ]) where Y ∼ G (µ, σ).
(e) Find the interquartile range (IQR) for these data. Show that IQR = 1.349σ for data
from a Gaussian distribution.
(f) Using both the numerical and graphical summaries for these data, assess whether it
is reasonable to assume a Gaussian model for these data. You must support your
conclusion with reasons written in complete sentences.
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5. Answer the questions below based on the following article (condensed) which appeared
in the Globe & Mail newspaper on January 22, 2014:

Early engagement key to getting girls into science careers, Canadian
study says

Girls are almost three times more likely to consider careers in science, math and engi-
neering if they participate in science fairs and summer camps —particularly in the early
grades —according to a new Canadian report. The study by researchers at Mount Saint
Vincent University in Halifax also suggests that good grades and teacher influence matters
less than exposure to these outside-the-classroom activities.

The findings come at a time when governments are reaching out to young women in an
effort to persuade them to consider the so-called STEM fields of learning —science, tech-
nology, engineering and mathematics —and organizations have stepped up their mentoring
efforts. Learning experts say it is crucial to reach girls before their enthusiasm wanes and
they drop science and math courses, which are optional in high school. “I think this is
a wake-up call. We need to increase the engagement level, and we need to encourage it
from a young age,”said the study’s lead investigator, Tamara Franz-Odendaal, an associate
professor at the university.

Prof. Franz-Odendaal and her team surveyed about 600 students in Grades 7 through
9 last year from the provinces New Brunswick, Nova Scotia and Prince Edward Island.
The data were collected using an online survey that students completed during school
hours. They found girls who engaged in activities, such as science fairs, competitions and
engineering summer camps, were 2.7 times more likely to consider a STEM career. For
boys, the influence was statistically insignificant.

(a) What type of study is this and why?

(b) Define the Problem for this study.

(c) Is the type of Problem descriptive, causative, or predictive? Explain why.

(d) What are the two most important variates in this study and what is their type?

(e) Define a suitable target population for this study.

(f) Define a suitable study population for this study.

(g) Give a possible source of study error for this study in relation to your answers to to (e)

and (f).

(h) What information is given about the sampling protocol for this study?

(i) Give a possible source of sample error for this study based on the information you have
stated in (h).

(j) What type of numerical summary is the number 2.7 mentioned in the article?
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Sample Midterm Test 2
1. Between 10:00 am September 26 and 10:00 pm September 28 2016 the Federation of
Students at the University of Waterloo conducted a referendum. The question was:

Which one of the following options do you support?

(1) Keep the mandatory, refundable $4.75 per academic term fee for WPIRG (Waterloo
Public Interest Research Group).

(2) Remove the mandatory, refundable $4.75 per academic term fee for WPIRG (Wa-
terloo Public Interest Research Group).

All eligible undergraduates were informed by email to cast their ballot online. Of the
31, 380 eligible voters, 8788 voted, and 7156 chose option 2.

(a) The Federation of Students used an empirical study to determine whether or not stu-
dents supported the removal of the WPIRG fee. The Plan step of the empirical study
involved using an online referendum. Using complete sentences give at least one advantage
and at least one disadvantage of using the online referendum in this context.

(b) Assume the model Y ∼ Binomial (8788, θ) where Y = number of students who chose
option (2): “Remove the mandatory, refundable $4.75 per academic term fee for WPIRG.”
What does the parameter θ represent in this study? Using complete sentences indicate how
valid you think the Binomial model is and why?

(c) The maximum likelihood estimate of θ based on the observed data is

. (You do not need to derive this estimate.)

(d) The p− value for testing the hypothesis H0 : θ = 0.8 is approximately

. Show all your steps.

(e) State your conclusion regarding the hypothesis H0 : θ = 0.8 in a sentence.

(f) By reference to your answer in (d), indicate whether the value θ = 0.8 is inside an
approximate 95% confidence interval or not. Justify your answer but do not construct the
interval.
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2. To decide whether to install solar panels on the roof of her house a homeowner records
the number of hours of full sunlight on her roof for 61 consecutive days in June and July. A
relative frequency histogram and a qqplot for these data are given below:Let yi = number
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of hours of full sunlight on the i′th day, i = 1, 2, . . . , 61. For these data

61∑
i=1

yi = 255.28 and
61∑
i=1

(yi − ȳ)2 = 71.5607

To analyze these data the model Yi ∼ G (µ, σ) , i = 1, 2, . . . , 61 independently is assumed.

(a) Using complete sentences indicate how reasonable the Gaussian model is for these data.

(b) In a complete sentence explain clearly what the parameter µ represents.

(c) For these data the maximum likelihood estimate of µ is

and the maximum likelihood estimate of σ is .
(You do not need to derive these estimates.)

(d) A 99% confidence interval for µ based on these data is (show all your steps):

(e) The Solar Energy Association recommends that the average number of hours of full
sunlight in a day should be at least 4 to generate enough energy to make solar panels
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worthwhile. Using complete sentences indicate what the homeowner should conclude about
whether or not it is worthwhile placing solar panels on the roof of her house. Note any
limitations of her study.

(f) The p− value for testing H0 : σ = 1 is between

and . Show all your steps.

3. Suppose Y ∼ Exponential (θ) with probability density function

f(y; θ) =
1

θ
e−y/θ for y > 0 and θ > 0

(a) Use Change of Variable to show that W = 2Y
θ has probability density function given by

g (w) =
1

2
e−w/2 for w > 0

which is the probability density function of a χ2(2) random variable.

(b) Suppose Y1, Y2, . . . , Yn is a random sample from the Exponential (θ) distribution. Use
your result from (a) and theorem(s) that you have learned in class to show that

U =
n∑
i=1

2Yi
θ
∼ χ2 (2n)

(c) Explain clearly how the pivotal quantity U given in (b) can be used to obtain a two-sided,
equal tailed, 100p% confidence interval for θ.

(d) Suppose W ∼ χ2 (20) and let a and b be such that P (W ≤ a) = 0.025 = P (W ≥ b).

Then a = and b = . (Use
all the decimal places from the table.)

(e) Suppose y1, y2, . . . , y10 is an observed random sample from the Exponential (θ) distri-
bution with

10∑
i=1

yi = 62.4

(i) Using your results from (c) and (d), a 95% confidence interval for θ based on the
pivotal quantity U is:

. Show your work.

(ii) An approximate 95% confidence interval for θ based on the asymptotic Normal
pivotal quantity is:

. Show your work. Com-
pare this interval with the interval you obtained in (i).
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4. Circle the letter corresponding to your choice.

(a) Suppose Y ∼ Binomial (n, θ). An experiment is to be conducted in which data y are
to be collected to estimate θ. To ensure that the width of the approximate 90% confidence
interval for θ is no wider that 2 (0.03), the sample size n should be at least:

A: 1068

B: 2401

C: 752

D: 267

E: 188

(b) For a Binomial experiment the approximate 95% confidence interval for θ based on the
asymptotic Normal pivotal quantity was 0.75± 0.05. Which statement is TRUE?

A: P (θ ∈ [0.7, 0.8]) = 0.95.
B: The interval [0.7, 0.8] is also a 15% likelihood interval.
C: We are 95% confident that θ = θ̂.
D: If the Binomial experiment was repeated 100 times independently and an approx-

imate 95% confidence interval was constructed each time then approximately 95 of these
intervals would contain the true value of θ.

E: None of the above.

(c) Which statement is FALSE?

A: A 15% likelihood interval is an approximate 95% confidence interval.
B: A 10% likelihood interval is an approximate 90% confidence interval.
C: Likelihood intervals must usually be found numerically or from a graph of the

relative likelihood function.
D: Likelihood intervals are as good or better than approximate confidence intervals

based on asymptotic Normal pivotal quantities.
E: The likelihood ratio statistic is an asymptotic pivotal quantity.

(d) Suppose Yi ∼ G (µ, σ) , i = 1, 2, . . . , n independently. Let

T =
Ȳ − µ
S/
√
n

where Ȳ =
1

n

n∑
i=1

Yi and S2 =
1

n− 1

n∑
i=1

(
Yi − Ȳ

)2
The distribution of T is:

A: G(0, 1)

B: G(0, σ)

C: t (n)

D: t (n− 1)

E: χ2 (n− 1)
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(e) Suppose we have n independent observations from a G(µ, σ) distribution. Which
statement is TRUE?

A: µ̃ is a point estimate of µ.
B: If σ is known then ȳ ± 1.645σ/

√
n is a 95% confidence interval for µ.

C: If σ is unknown then ȳ±as/
√
n is a 95% confidence interval for µ if P (T ≤ a) = 0.975

and T ∼ t (n− 1).
D: If σ is unknown then ȳ±as/

√
n is a 95% confidence interval for µ if P (T ≤ a) = 0.95

and T ∼ t (n− 1).
E: S is the maximum likelihood estimator of σ.

(f) Data are collected in an experiment to test the null hypothesis H0 using the test
statistic D. The p− value for testing H0 is equal to

A: the probability that the null hypothesis H0 is true.
B: the probability that the alternative hypothesis HA is true.
C: the probability of obtaining a value of D as unusual or more unusual than the

observed value of D if H0 is true.
D: the probability of obtaining a value of D as unusual or more unusual than the

observed value of D if the alternative hypothesis HA is true.
E: None of the above.

(g) Which statement is FALSE?

A: For Binomial data the likelihood ratio statistic is a continuous random variable.
B: The distribution of the likelihood ratio statistic based on a random sample Y1, Y2, . . . , Yn

is approximately χ2 (1) for large n.
C: For Exponential data, the likelihood ratio statistic is a continuous random variable.
D: For Binomial(n, θ) data, an approximate 95% confidence interval for θ based on the

asymptotic Normal pivotal quantity can contain values outside the interval [0, 1].
E: For Exponential(θ) data, an approximate 95% confidence interval for θ based on a

15% likelihood interval only contains values of θ greater than zero.
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For questions (h) and (i), suppose that a data set is assumed to be a random sample from a
G (µ, σ) distribution where µ and σ are unknown. Suppose also that the data set is stored
in the variable y and the following code has been run in R:

ybar<-mean(y)
n<-length(y)
s2<-var(y)
s<-sqrt(s2)

(h) Which of the following R commands gives a 95% confidence interval for the mean µ?

A: c(ybar-qnorm(0.975,0,1)*s/sqrt(n),ybar+qnorm(0.975,0,1)*s/sqrt(n))
B: c(ybar-qnorm(0.95,0,1)*s/sqrt(n),ybar+qnorm(0.95,0,1)*s/sqrt(n))
C: c(ybar+qt(0.05,n-1)*s/sqrt(n),ybar+qt(0.95,n-1)*s/sqrt(n))
D: c(ybar-qt(0.975,n)*s/sqrt(n),ybar+qt(0.975,n)*s/sqrt(n))
E: c(ybar-qt(0.975,n-1)*s/sqrt(n),ybar+qt(0.975,n-1)*s/sqrt(n))

(i) Which of the following R commands gives a 95% confidence interval for the standard
deviation σ?

A: c(sqrt((n-1)*s2/qchisq(0.025,n-1)),sqrt((n-1)*s2/qchisq(0.975,n-1)))
B: c(sqrt((n-1)*s2/qchisq(0.975,n-1)),sqrt((n-1)*s2/qchisq(0.025,n-1)))
C: c(sqrt((n-1)*s2/qchisq(0.05,n-1)),sqrt((n-1)*s2/qchisq(0.95,n-1)))
D: c(sqrt((n-1)*s2/qchisq(0.025,n)),sqrt((n-1)*s2/qchisq(0.975,n)))
E: c(sqrt((n-1)*s2/qchisq(0.975,n)),sqrt((n-1)*s2/qchisq(0.025,n)))

(j) Suppose that a data set is assumed to be a random sample from an Exponential (θ)
distribution. Suppose also that the data set is stored in the variable y and the following
code has been run in R:

thetahat<-mean(y)
n<-length(y)

Which of the following R commands doesNOT give the observed value of the likelihood
ratio statistic evaluated at theta for these data?

A: 2*(log((theta/thetahat)^n)+n*(thetahat/theta-1))
B: 2*log((theta/thetahat)^n*exp(n*(1-theta/thetahat)))
C: -2*n*(log(thetahat/theta)+1-thetahat/theta)
D: -2*log((thetahat/theta)^n*exp(n*(1-thetahat/theta)))
E: -2*n*log((thetahat/theta)*exp(1-thetahat/theta))
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Sample Final Exam
1. Let Y = the number of children in the family of a randomly chosen child. A proposed
probability function for Y is

f(y; θ) = P (Y = y; θ) = yθy−1(1− θ)2 for y = 1, 2, . . . ; 0 ≤ θ < 1 (1)

Suppose 50 children are chosen at random and the observed data are y1, y2, . . . , y50 with
50∑
i=1

yi = 100.

(a) Assume that the model (1) holds. Find the maximum likelihood estimate of θ based on
these data. Clearly show all your steps.

(b) Assuming the model (1) holds and θ̂ = 1
3 , complete the following table of expected

frequencies.

Number of Children 1 2 3 ≥ 4 Total
Observed Frequency 21 15 8 6 50

Expected Frequency 5.5556 50

(c) Using your results from (b) and the likelihood ratio test statistic, test the hypothesis
that model (1) is a suitable model for these data. Be sure to give the approximate p−value
and give your conclusion in a sentence.

2. A random sample of 50 students from STAT 231 were asked the length of time (in hours)
they spent in completing the first R assignment. The data were:

0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.09 0.09 0.10
0.10 0.10 0.13 0.13 0.14 0.16 0.16 0.17 0.17 0.18
0.19 0.20 0.21 0.22 0.22 0.27 0.27 0.28 0.31 0.37
0.38 0.39 0.43 0.47 0.47 0.47 0.47 0.49 0.52 0.61
0.62 0.63 0.64 0.74 0.77 0.90 0.99 1.37 2.00 2.02

Let Yi = length of time spent completing the first R assignment by student i, i = 1, 2, . . . , 50.
A proposed model for the data is that Yi has probability density function

f (y; θ) =
θ

(1 + y)θ+1
for y ≥ 0 and θ > 0 (2)
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(a) The data were stored in the variable y in R. Answer (i)-(iii) using the following output
from R:

> sum(y)
[1] 19.9
> sum(log(1+y))
[1] 14.960
> fivenum(y)
[1] 0.020 0.130 0.245 0.490 2.020
(i) sample median =
(ii) IQR =
(iii) sample skewness is positive / negative (circle your choice)

(b) Assume that the 50 observations represent a random sample from the distribution with
probability density function given by (2). Derive the maximum likelihood estimate of θ
based on these data. Show all your steps clearly.
(c) Briefly describe two graphical summaries that could be used to check the fit of the
model (2) to the data.
(d) A graph of R(θ) for the given data and model is given below. An approximate 95%

confidence interval for θ is [ , ]
(Use 2 decimal places.)
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1

θ
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(e) Test H0 : θ = 4.3 using the likelihood ratio test statistic. You may use the fact that
R (4.3) = 0.1774. Be sure to give the approximate p− value and a conclusion.
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3. Researchers in the Kinesiology Department at a very large university with highly ranked
sports teams were interested in comparing two exercise programs for treating sprained
ankles. Ninety-two athletes who attended the university sports injury clinic for sprained
ankles were randomly assigned to two different programs. In Program 1, 41 athletes were
asked to complete a series of stretching exercises followed by icing. In Program 2, 51 athletes
were asked to complete a series of stretching exercises followed by acupuncture. Let yij =

the number of days until return to sports activity for athlete j in Program i, j = 1, 2, . . . , ni
and i = 1, 2. To analyze these data assume the model for data from Program 1 is,

Y1j ∼ G (µ1, σ) , j = 1, 2, . . . , 41 independently

and independently, the model for data from Program 2 is,

Y2j ∼ G (µ2, σ) , j = 1, 2, . . . , 51 independently

where µ1, µ2 and σ are unknown parameters.
The observed data gave the following summaries:
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Qqplot for Program 1 Data
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Qqplot for Program 2 Data

Program 1 ȳ1 = 27.3415 s2
1 = 51.8805

Program 2 ȳ2 = 20.4314 s2
2 = 95.1302
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(a) Based on the qqplots what can you conclude about the validity of the Gaussian model
assumptions? Your answer should be in complete sentences.

(b) Determine a 99% confidence interval for µ1 − µ2.

(c) On the basis of the confidence interval you constructed in (b), what can you say about
the p − value associated with a test of the hypothesis H0 : µ1 = µ2? (You do not need to
do this test.) What is your conclusion regarding the hypothesis H0 : µ1 = µ2?

(d) With reference to a suitable study population, what conclusions can the researchers
draw from this study? Indicate any limitations to these conclusions.

(e) The same study was conducted at a different large university but with 100 athletes in
Program 1 and 100 athletes in Program 2. The p−value for testing H0 : µ1 = µ2 was equal
to 0.028 and a 95% confidence for µ1− µ2 was [1.1, 3.4]. Explain in complete sentences the
difference between a result which is statistically significant and a result which is of practical
significance in the context of this larger study.

4. The term “white coat hypertension”is a name give to the phenomenon that occurs when
a person’s blood pressure is higher when it is taken in a medical setting than when it is
taken at home.

To study this effect a doctor measured the systolic blood pressures in mm Hg of 26
patients at home and in the doctor’s offi ce. Systolic blood pressure measurements were
taken at home and in the doctor’s offi ce both using the same home blood pressure monitor.
Thirteen patients were randomized to take the first blood pressure reading at home while
the remaining 13 took the first blood pressure reading at the doctor’s offi ce. The reading
for the doctor’s offi ce (y1i) and at home (y2i) as well as the difference (yi = y1i − y21) for
each of the 26 patients are given below.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13
y1i 138 158 96 143 135 110 124 135 184 172 110 176 141
y21 134 154 87 137 129 100 121 128 176 168 104 174 139

yi = y1i − y21 4 4 9 6 6 10 3 7 8 4 6 2 2

Subject 14 15 16 17 18 19 20 21 22 23 24 25 26
y1i 129 141 127 128 152 151 151 140 112 141 151 137 146
y21 124 134 114 125 146 146 152 136 112 133 152 132 143

yi = y1i − y21 5 7 13 3 6 5 -1 4 0 8 2 5 3

To analyze these data the model, Yi ∼ G (µ, σ) , i = 1, 2, . . . , 26 independently, is assumed
where µ and σ are unknown parameters.
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The measurements taken at the doctor’s offi ce were stored in the variable y1 and the
measurements taken at home were stored in the variable y2 in R.

The following code was run in R:

t.test(y1,y2,mu=0,paired=TRUE,conf.level=0.95)

s<-sd(y1-y2)

cat("s = ", s)

The output obtained was:

Paired t-test

data: y1 and y2

t = 8.3098, df = 25, p-value = 1.167e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

3.789707 6.287217

sample estimates:

mean of the differences

5.038462

> s<-sd(y1-y2)

>

> cat("s = ", s)

s = 3.091676

(a) Explain clearly in a full sentence what the hypothesis H0 : µ = 0 means in the context
of this study.

(b) Based on the R output on the previous page give a point estimate of µ and a 95%

confidence interval for µ. Use all the decimal places in the output.

(c) Based on the R output on the previous page what is the p − value for testing the
hypothesis H0 : µ = 0. Clearly state your conclusion regarding the hypothesis H0 : µ = 0

in a sentence.

(d) Construct a 95% confidence interval for σ using the information from the R output.

(e) This experiment is a matched pairs experiment. Explain in full sentences why this type
of design is better than a design in which 52 subjects are randomly divided into two groups
of 26 with one group having their blood pressure taken in the doctor’s offi ce while the other
group has their blood pressure taken at home.

(f) If a difference in mean systolic blood pressure was found to be statistically significant
can you conclude that the difference is due to where the blood pressure is taken (doctor’s
offi ce versus home)? Explain.
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5. An instructor of a second year course in statistics used clickers in her lectures in the
winter 2016 term. She is interested in the relationship between clicker grades and final
grades in the course. Her data consist of (xi, yi) , i = 1, 2, . . . , 82 where xi = clicker grade
out of 5 and yi = final grade out of 100. To analyze these data the simple linear regression
model, Yi ∼ G (α+ βxi, σ) , i = 1, 2, . . . , 82 independently, is assumed where α, β and σ
are unknown parameters and the x′is are assumed to be known constants.

Suppose the data set x1, x2, . . . , x82 are stored in the vector x and the data set y1, y2, . . . , y82

are stored in the vector y in R. The following code was run in R:

RegModel<-lm(y~x)

summary(RegModel)$coefficients

The output obtained was:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.185 3.343 14.115 < 2e-16

x 5.191 0.817 6.353 1.2e-08

(a) Answer the following questions based on this information. Use all the decimals given
in the output.

The least squares estimate of β is .

The maximum likelihood estimate of α is .

The equation of the fitted least squares line is .

An estimate of the mean increase in final grade for a unit increase in clicker grade is
.

An estimate of the standard deviation of the maximum likelihood estimator β̃ is
.

The value of the test statistic for testingH0 : β = 0 is equal to .

The p− value for testing H0 : β = 0 is equal to .

State your conclusion with justification regarding the hypothesis H0 : β = 0 in a sentence.
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(b) Draw the fitted line on the scatterplot (Panel A below).
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(c) Which of the plots in panels A-D of Figure 1 are relevant for drawing conclusions about
the validity of the assumed regression model for these data? What conclusions can be
drawn from these plots about the validity of the assumed model? Indicate clearly what
you should see if the assumptions are valid. Your answer should be written in complete
sentences.

(d) If evidence of a relationship is found can you conclude that a higher clicker grade results
is the cause of a higher final grade?
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(e) The following additional code was run:

xbar<-mean(x)

Sxx<-(length(x)-1)*var(x)

se<-summary(RegModel)$sigma

cat("xbar = ", xbar,", Sxx = ", Sxx, ", se = ", se)

The output obtained was:

xbar = 3.75405 , Sxx = 217.3591 , se = 12.0447

Based on this output and the previous R output given, determine a 95% prediction
interval for the final grade for a student who has a clicker mark of 4.2. Show your work.

6. In November 2016 the Ipsos Market Research Company conducted a telephone survey of
1000 adults aged 18 and over in Canada. Participants were asked “Do you agree/disagree
that finding holiday gifts that people will like is diffi cult?”Whether the adult was a Baby
Boomer (born 1946-1964), Gen X’er (born 1965-77) or a Millennial (born after 1977) was
also recorded. The results were:

Diffi cult / Generation Millennial Gen’X Baby Boomers Total

Agree
Disagree

182 270 268

88 80 112

720

280

Total 270 350 380 1000

(a) Is this an experimental or observational study? Explain.

(b) State the two variates of interest for this study and give their type.

(c) Use the likelihood ratio test statistic to test the hypothesis of no relationship (i.e. test
for independence) between the two variates.

(d) For this study suggest, with reasons, a suitable target population and study population.

(e) Give a possible source of study error in relationship to your answer in (c).

(f) Let θ be the proportion of the study population who agree that finding holiday gifts that
people will like is diffi cult. Give a point estimate of θ and an approximate 95% confidence
interval for θ based on the observed data.
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Sample Midterm Test 1 Solutions
1. (a) E (b) B (c) C (d) D (e) B (f) A (g) B (h) B (i) D (j) B

2. (a) Since t = 1, the likelihood function is

L (θ) =
n∏
i=1

θyi

yi!
e−θ =

(
n∏
i=1

1

yi!

)
θ

n∑
i=1

yi
e−nθ for θ ≥ 0

or more simply (ignoring constants with respect to θ)

L (θ) = θ

n∑
i=1

yi
e−nθ = θnȳe−nθ for θ > 0 since nȳ =

n∑
i=1

yi

The log likelihood function is

l (θ) = nȳ log θ − nθ for θ > 0

Solving
d

dθ
l (θ) =

nȳ

θ
− n =

nȳ − nθ
θ

=
n (ȳ − θ)

θ
= 0

gives the maximum likelihood estimate θ̂ = ȳ.

(b)

0 1 2 3 4 ≥ 5 Total
Observed
Frequency

28 45 56 40 21 10 200

Expected
Frequency

24.491 51.432 54.003 37.802 19.846 12.425 200

ej = 200 · (2.1)j

j!
e−2.1 for j = 0, 1, 2, 3, 4, 5

187
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The agreement between the observed and expected frequencies seems quite good. The
model appears to fit the data well.

(c) By the Invariance Property of maximum likelihood estimates, the maximum likelihood
estimate of the probability that during a t = 2 minute interval there are no transactions is(

2θ̂
)0

0!
e−2θ̂ = e−2(2.1) = e−4.2 = 0.015

3. (a) The likelihood function is

L (σ) =
n∏
i=1

f(yi;σ) =
n∏
i=1

1√
2πσ

e−y
2
i /(2σ2) for σ > 0

= (2π)−n/2
1

σn
exp

(
− 1

2σ2

n∑
i=1

y2
i

)
or more simply

L (σ) = σ−n exp

(
− 1

2σ2

n∑
i=1

y2
i

)
for σ > 0

The log likelihood is

l(σ) = −n log(σ)− 1

2σ2

n∑
i=1

y2
i for σ > 0

Solving
d

dσ
l(σ) = −n

σ
+

1

σ3

n∑
i=1

y2
i =

1

σ3

(
−nσ2 +

n∑
i=1

y2
i

)
= 0

gives the maximum likelihood estimate

σ̂ =

√
1

n

n∑
i=1

y2
i

(b)

R (σ) =
L (σ)

L(σ̂)
=

σ−n exp

(
− 1

2σ2

n∑
i=1

y2
i

)
σ̂−n exp

(
− 1

2σ̂2

n∑
i=1

y2
i

) for σ > 0

=

(
σ̂

σ

)n exp
(
− 1

2σ2
nσ̂2

)
exp

(
−n

2

) since nσ̂2 =
n∑
i=1

y2
i

=

(
σ̂

σ

)n
exp

{
n

2

[
1− (σ̂)2

σ2

]}
for σ > 0

as required.
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(c) By the Invariance Property of maximum likelihood estimates, the maximum likelihood
estimate of P (Y > 0.3;σ) is

P (Y > 0.3; σ̂) = P

(
Z >

0.3− 0

1.2

)
where Z ∼ G (0, 1)

= 1− P (Z < 0.25) = 1− 0.5987 = 0.4013 ≈ 0.401

4. (a) The five-number summary for these data is:

42 , 69.5 , 79.5 , 87 , 99

q (0.25) =
1

2

(
y(22) + y(23)

)
=

1

2
(69 + 70) = 69.5

q (0.5) =
1

2

(
y(45) + y(46)

)
=

1

2
(79 + 80) = 79.9

q (0.75) =
1

2

(
y(68) + y(69)

)
=

1

2
(87 + 87) = 87

(b) For these data:

sample mean = ȳ =
6987

90
= 77.633

and

sample standard deviation = s =

√√√√ 1

89

[
555863− (6987)2

90

]
= 12.288

(c) A

(d) The proportion of observations in the interval [ȳ − s, ȳ + s] = [65.345, 89.921] is
60/90 = 0.667.

If Y ∼ G (µ, σ) then

P (Y ∈ [µ− σ, µ+ σ]) = P (|Y − µ| ≤ σ) = P

(
|Y − µ|
σ

≤ 1

)
= P (|Z| ≤ 1) = 2P (Z ≤ 1)− 1 where Z ∼ N (0, 1)

= 2 (0.84134)− 1 = 0.68268

≈ 0.683

The proportion of observations in the interval (0.667) is slightly smaller than what would
be expected for Gaussian data (0.683).

(e) For these data the
IQR = 87− 69.5 = 17.5

To show that IQR = 1.349σ for Gaussian data we need to solve

0.5 = P (|Y − µ| ≤ cσ) = P

(
|Y − µ|
σ

≤ c
)

for c if Y ∼ G (µ, σ)
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From the N (0, 1) table P (|Z| ≤ c) = 2P (Z ≤ c)− 1 = 0.5 holds if c = 0.6745. Therefore

IQR = 2 (0.6745)σ = 1.349σ

for Gaussian data.

(e) For Gaussian data we expect the relative frequency histogram to be approximately
symmetric. The relative frequency histogram for these data is negatively skewed with a left
tail.

For Gaussian data we expect the sample mean and sample median to be approximately
equal. For these data the sample median = 79.5 > sample mean = 77.633.

For Gaussian data we expect the sample kurtosis to be close to 3. The sample kurtosis
for these data equals 3.0211 which is quite close to 3.

For Gaussian data we expect the points to be scattered about a straight line with more
variability about the line at both ends. The shape of this qqplot is very U-shaped.

The proportion of observations in the interval [ȳ − s, ȳ + s] (0.667) is slightly smaller
than we would expect for Gaussian data (0.683).

For Gaussian data we expect the IQR to be close in value to 1.349s = 1.349 (12.288) =

16.58. For these data IQR = 17.5 which is larger than expected.

Based on these observations, the Gaussian model is not the best model for these data.

The relative frequency histogram suggests that a model which is negatively skewed
would be more appropriate for these data.

5. (a) This study would best be described as a sample survey since the population of
interest (students in Grades 7 to 9 in New Brunswick, Nova Scotia, and Prince Edward
Island) is finite. As well the purpose of the study was just to learn about this population
and the researchers did not attempt to change or control any of the variates for the sampled
units. It should be noted that, since the survey was voluntary, the sample would not be a
representative sample.

(b) The Problem is to examine the relationship between participation in activities such as
science fairs, competitions and engineering camps and the likelihood of considering careers
in science, math and engineering among students in the early grades.

(c) This is a descriptive type Problem since the researchers wanted to know whether partic-
ipating in activities such as science fairs, competitions and engineering camps is associated
with whether girls would be more likely to consider a STEM career. The researchers were
only observing variates to determine attributes of the study population.
Important Note: This is NOT a causative problem because the researchers were not in
control of assigning any of the variates in this study.

(d) One important variate is whether or not the student participated in activities such as
science fairs, competitions and engineering camps. This is a categorical variate.
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The other important variate was whether or not the student would consider a STEM career.
This is a also a categorical variate.

(e) A suitable target population for this study is the set of all students in Grades 7 to 9 in
the provinces of New Brunswick, Nova Scotia and Prince Edward Island.

OR

A suitable target population for this study is the set of all students in Grades 7 to 9 in
Canada.

(f) A suitable study population for this study is the set of all students in Grades 7 to 9 in
the schools chosen by the researchers in the provinces of New Brunswick, Nova Scotia and
Prince Edward Island. The schools are not specified in the article but it would have been
impossible for the researchers to go to every school in these 3 provinces.

OR

A suitable study population for this study is the set of all students in Grades 7 to 9 in the
provinces of New Brunswick, Nova Scotia and Prince Edward Island.

(g) If the target population is the set all students in Grades 7 to 9 in the provinces of New
Brunswick, Nova Scotia and Prince Edward Island and the study population is the set of all
students in Grades 7 to 9 in the schools chosen by the researchers in these provinces then a
possible source of study error is that the students in the schools chosen by the researchers
might be systematically different from the students in all schools. For example, it might
be that the researchers only included schools in large cities and not schools in rural areas.
Students in rural schools may have less access to science fairs, competitions and engineering
camps.

OR

If the target population is the set all students in Grades 7 to 9 in Canada and the study
population is the set of all students in Grades 7 to 9 in the provinces of New Brunswick,
Nova Scotia and Prince Edward Island then a possible source of study error is that the
students in the provinces of New Brunswick, Nova Scotia and Prince Edward Island might
be systematically different from the students in Canada. For example, it might be that the
schools in the provinces of New Brunswick, Nova Scotia and Prince Edward Island which
have a much smaller population have less government funding for activities such as science
fairs, competitions and engineering camps.

(h) The article indicates that the data were collected using an online survey and that the
students completed the survey during school hours. No information is given about whether
students were required to complete the survey or not.

(i) A possible source of sample error is that the survey was a voluntary survey. It could be
that students who completed the survey are students who are generally more engaged in
all activities and therefore might also be more likely to engage in other activities such as
science fairs, competitions and engineering camps as compared to the students in the study
population who did not volunteer to complete the survey.
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(j) The numerical summary 2.7 is a relative risk. It is the relative risk among girls of
considering a STEM career in the group who participate in activities such as science fairs,
competitions and engineering camps as compared to those who do not participate.
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Sample Midterm Test 2 Solutions

1. (a) The respondents to the survey are students who heard about the online referendum
and then decided to vote in the referendum. These students may not be representative of
all students at the University of Waterloo. For example, it is possible that the students who
took the time to vote are also the students who most want the to remove the WPIRG fee.
Students who don’t care about the WPIRG fee probably did not bother to vote. This is
an example of sample error. Any online survey such as this online referendum has the
disadvantage that the sample of people who choose to vote are not necessarily
a representative sample of the study population of interest. The advantage of
online surveys is that they are inexpensive and easy to conduct. To obtain a
representative sample you would need to select a random sample of all students at the
University of Waterloo. Unfortunately taking such a sample would be much more time
consuming and costly than conducting an online referendum.

(b) The parameter θ represents the proportion of the 31, 380 eligible undergraduate voters
(the study population) who support option (2).

Important Note: The parameters in the model are always related to attributes of interest
in the study population not in the sample.

There are two possible outcomes (Yes or No) on each trial (student) which is consistent
with a Binomial model. A Binomial model also assumes independent trials. This assump-
tion may not be a valid. For example, if groups of students, say within a specific faculty,
got together and decided how to vote, their responses would not be independent events.

Since a student may not vote more than once, the sample of 8788 students is actually
drawn without replacement from the finite population of 31, 380 students. If the sample
was drawn at random (it was not) then we could justify the Binomial model using the
Binomial approximation to the Hypergeometric.

(c) The maximum likelihood estimate of θ based on the observed data is 0.814.

θ̂ =
7156

8788
= 0.814292

(d) To test H0 : θ = 0.8 we use the test statistic

D = |Y − nθ0| = |Y − (8788) (0.8)| = |Y − 7030.4|

with observed value

d = |7156− 7030.4| = 125.6



194 SOLUTIONS TO SAMPLE TESTS

and

p− value = P (D ≥ d;H0)

= P (|Y − 7030.4| ≥ 125.6) if Y ∼ Binomial (8788, 0.8)

≈ P

(
|Z| ≥ 125.6√

8788 (0.8) (1− 0.8)

)
where Z ∼ G (0, 1)

= 2 [1− P (Z ≤ 3.35)]

= 2 (1− 0.9996)

= 0.0008

The p− value for testing the hypothesis H0 : θ = 0.8 is approximately 0.001.

(e) Since the approximate p − value for testing H0 : θ = 0.8 is less than 0.001 we would
conclude that, based on the data, there is very strong evidence against the hypothesis
H0 : θ = 0.8.

(f) Since the approximate p− value for testing H0 : θ = 0.8 is less than 0.001 which is less
than 0.05 then we know that the value θ = 0.8 is not inside an approximate 95% confidence
interval.

2. (a) Since the relative frequency histogram looks reasonably bell-shaped and the points
in the qqplot lie reasonably along a straight line, the Gaussian model seems reasonable for
these data.

(b) The parameter µ represents the mean number of hours of full sunlight in a day on the
homeowner’s roof over a year which is the study population.

Important Note: The parameters in the model are always related to attributes of interest
in the study population not in the sample.

(c) For these data the maximum likelihood estimate of µ is

255.28

61
= 4.18492 = 4.185

and the maximum likelihood estimate of σ is

σ̂ =

[
1

61
(71.5607)

]1/2

= 1.0831095 = 1.083

(d) Note that

s =

[
1

60
(71.5607)

]1/2

= 1.092098

Since P (T ≤ 2.6603) = 0.995 where T ∼ t(60) a 99% confidence interval for µ is given
by
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ȳ ± 2.6603s/
√

61

=
255.28

61
± 2.6603 (1.092098) /

√
61

= 4.18492± 0.371987

= [3.812931, 4.556905]

= [3.813, 4.557]

(e) The point estimate of µ is µ̂ = ȳ = 4.185 which is greater than 4. However the 99%

confidence interval for µ is [3.813, 4.557] which contains values less than 4. Therefore based
on the data there are values of µ which are less than 4 which are reasonable in light of the
observed data. Since values of µ which are less than 4 are reasonable in light of the observed
data and since the Solar Energy Association recommends that the average number of hours
of full sunlight in a day should be at least 4, the landowner should conclude that there is
not enough evidence to suggest placing solar panels on her roof.

Note also that she only took observations in two particular months (June and July)
which may be the months with most sunlight. It would be a better idea to take measure-
ments over the different months of the year in order to make an informed decision about
whether solar panels are worthwhile.

(f) We use the test statistic

U =
(n− 1)S2

σ2
0

=
60S2

(1)2 = 60S2 ∼ χ2 (60) if H0 : σ = 1 is true

The observed value is u = 60s2 = 71.5607.

p− value = 2P (U ≥ 71.5607) where U ∼ χ2 (60)

From the Chi-squared table

P (U ≥ 59.335) = 1− 0.5 = 0.5 and P (U ≥ 74.397) = 1− 0.9 = 0.1

Therefore 0.2 < p− value < 1.

3. (a) For w ≥ 0,

G (w) = P (W ≤ w) = P

(
2Y

θ
≤ w

)
= P

(
Y ≤ θw

2

)
= F

(
θw

2

)
where F (y) = P (Y ≤ y) is the c.d.f. of Y

Therefore

g (w) = G′ (w) = f

(
θw

2

)
d

dw

(
θw

2

)
=

1

θ
e−( θw2 )/θ

(
θ

2

)
=

1

2
e−w/2 for w ≥ 0
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as required.

(b) Since the sum of independent Chi-squared random variables has a Chi-squared distrib-
ution
with degrees of freedom equal to the sum of the degrees of freedom of the Chi-squared
random variables in the sum, and since 2Yi

θ ∼ χ
2 (2), i = 1, 2, . . . , n therefore

U =
n∑
i=1

2Yi
θ
∼ χ2

(
n∑
i=1

2

)
or χ2 (2n) as required

(c) Using the Chi-squared table find a and b such that P (U ≤ a) = 1−p
2 and P (U ≤ b) =

1+p
2 where U ∼ χ2 (2n).

Since

p = P

(
a ≤

n∑
i=1

2Yi
θ
≤ b
)

= P

1

b
≤ θ

2
n∑
i=1

Yi

≤ 1

a



= P

2
n∑
i=1

Yi

b
≤ θ ≤

2
n∑
i=1

Yi

a


then a 100p% confidence interval for θ is given by2

n∑
i=1

yi

b
,

2
n∑
i=1

yi

a


(d) If W ∼ χ2 (20) then P (W ≤ 9.591) = 0.025 = P (W ≥ 34.170) so a = 9.591 and
b = 34.170.

(e)

(i) A 95% confidence interval for θ based on the pivotal quantity U is [3.652, 13.012].2
n∑
i=1

yi

b
,

2
n∑
i=1

yi

a

 =

[
2 (62.4)

34.170
,
2 (62.4)

9.591

]

= [3.65232, 13.01220]
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(ii) An approximate 95% confidence interval for θ based on the asymptotic Normal
pivotal quantity is [2.372, 10.108] .

ȳ ± 1.96
ȳ√
n

=
62.4

10
± 1.96

(62.4/10)√
10

= 6.24± 3.867592

= [2.372408, 10.107592]

The intervals are quite different which is what you would expect since the result in (i) is
exact while the result in (ii) is based on an approximation which is poor since n = 10 is
small.

4. (a) C (b) D (c) B (d) D (e) C (f) C (g) A (h) E (i) B (j) B
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Sample Final Exam Solutions
1. (a)

L (θ) =
50∏
i=1

yiθ
yi−1(1− θ)2 =

(
50∏
i=1

yi

)
θ

50∑
i=1

yi−50

(1− θ)100

=

(
50∏
i=1

yi

)
θ100−50 (1− θ)100 =

(
50∏
i=1

yi

)
θ50 (1− θ)100 for 0 ≤ θ < 1

or more simply
L (θ) = θ50 (1− θ)100 for 0 ≤ θ < 1

The log likelihood function is

l (θ) = 50 log θ + 100 log (1− θ) for 0 < θ < 1

Since
d

dθ
l (θ) =

50

θ
− 100

1− θ =
50− 50θ − 100θ

θ (1− θ) =
50− 150θ

θ (1− θ) = 0

if
θ =

50

150
=

1

3
= 0.333

therefore the maximum likelihood estimate for θ is

θ̂ =
50

150
=

1

3
= 0.333

(b)

Number of Children 1 2 3 ≥ 4 Total
Observed Frequency 21 15 8 6 50

Expected Frequency 22.222 14.815 7.407 5.5556 50

e1 = 50

(
2

3

)2

= 22.222222

e2 = 50 (2)

(
2

3

)2(1

3

)
= 14.8148148

e3 = 50 (3)

(
2

3

)2(1

3

)2

= 7.4074074

or e3 = 50− (22.222222 + 14.8148148 + 5.5556) = 7.4073632
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(c) The observed value of the likelihood ratio statistic is

λ = 2

[
21 log

(
21

22.2222

)
+ 15 log

(
15

14.8148148

)
+ 8 log

(
8

7.4074074

)
+ 6 log

(
6

5.5556

)]
= 0.1516 = 0.152

(Remember log = ln.) The degrees of freedom are 4− 1− 1 = 2.

p− value ≈ P (W ≥ 0.1516) where W ∼ χ2 (2) = Exponential (2)

= e−0.1516/2

= 0.927

Therefore based on these data there is no evidence against the hypothesis that model (1)

is a suitable model for these data.

2. (a)

(i) sample median = 0.245
(ii) IQR = 0.36
(iii) sample skewness is positive / negative

(b)

L (θ) =
50∏
i=1

θ

(1 + yi)
θ+1

= θ50

[
50∏
i=1

(1 + yi)

]−θ−1

for θ > 0

or more simply

L (θ) = θ50

[
50∏
i=1

(1 + yi)

]−θ
for θ > 0

The log likelihood function is

l (θ) = 50 log θ − θ log

[
50∏
i=1

(1 + yi)

]
= 50 log θ − θ

50∑
i=1

log (1 + yi) for θ > 0

Since
d

dθ
l (θ) =

50

θ
−

50∑
i=1

log (1 + yi) =
1

θ

(
50− θ

50∑
i=1

log (1 + yi)

)
= 0

if
θ =

50
50∑
i=1

log (1 + yi)

=
50

log

[
50∏
i=1

(1 + yi)

] =
50

14.960
= 3.342

Therefore the maximum likelihood estimate of θ based on these data is

θ̂ = 3.342
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(c) Superimpose a graph of the probability density function of the assumed model on a
relative frequency histogram for the observed data and see how well they agree.

Superimpose a graph of the cumulative distribution function of the assumed model on
the graph of the empirical cumulative distribution function for the observed data and see
how well they agree.

(d) An approximate 95% confidence interval for θ is [ 2.50 , 4.35 ]

(e) The observed value of the likelihood ratio statistic is

−2 logR (4.3) = −2 log (0.1774) = 3.458696 = 3.459

and

p− value ≈ P (W ≥ 3.459) where W ∼ χ2 (1)

= 2
[
1− P

(
Z ≤

√
3.459

)]
where Z ∼ G (0, 1)

= 2 [1− P (Z ≤ 1.860)]

= 2 (1− 0.96856)

= 0.0629

Since p− value ≈ 0.0629 there is some (weak) evidence against H0 : θ = 4.3 based on these
data.

3. (a) For both Programs 1 and 2 the points lie reasonably along a straight line with more
variability at both ends of the line which is what we expect for Gaussian data. These
qqplots suggest the Gaussian assumption is reasonable for both groups.

(b)

s2
p =

40 (51.8805) + 50 (95.1302)

90
= 75.9081, sp = 8.7125

P (T ≤ 2.6316) =
1 + 0.99

2
= 0.995 where T ∼ t (90)

A 99% confidence interval for µ1 − µ2 is

27.3415− 20.4314± (2.6316) (8.7125)

√
1

41
+

1

51
= 6.9101± 4.8093

= [2.1009, 11.7193]

= [2.101, 11.719]

(c) The 99% confidence interval for µ1 − µ2 does not contain the value zero.

Therefore the p− value for testing H0 : µ1 = µ2 will be less than 0.01.

Since the p − value < 0.01, therefore there is strong evidence against the hypothesis
H0 : µ1 = µ2 based on the observed data.
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(d) A reasonable study population consists of the population of athletes at the large uni-
versity who attended the university sports injury clinic for hamstring injuries during the
time of the study.

Since the 99% confidence interval for µ1 − µ2 does not contain the value zero, the
data suggest that there is a difference in the mean number of days until return to sports
activity for the two different exercise programs. These conclusions only apply to the study
population. It would not be correct to make a statement about the mean difference in days
until return to sports activity between the two exercise programs at another university.

A drawback of the study is that the study was only done at one university and only
involved one sports injury clinic. The results of this study suggest conducting similar studies
at other universities to see if Program 2 does in fact reduce the mean number of days to
return to sports activity at other universities.

(e) In this larger study the difference in mean number of days until return to sports activity
was found to be statistically significant. However a difference of 1 to 3 days until return
to sports activity might not be large enough to be of practical significance for athletes at
a university unless of course they are varsity athletes who are trying to return from injury
to play in an important season game.

4. (a) The hypothesis H0 : µ = 0 means that there is no difference in mean blood pressure
measurements between the doctor’s offi ce and at home.

(b)A point estimate of µ is 5.038462 and a 95% confidence interval for µ is [3.789707, 6.287217].

(c) The p − value for testing the hypothesis H0 : µ = 0 is 1.167e − 08 or approximately
zero. Since p − value ≈ 0 there is very strong evidence against the hypothesis H0 : µ = 0

based on these data.

(d) From the Chi-squared table

P (W ≤ 13.12) = 0.025 and P (W ≤ 40.646) = 0.975

where W ∼ χ2 (25).

A 95% confidence interval for σ is[
s
√

25√
40.646

,
s
√

25√
13.12

]

=

[
(3.091676) (5)√

40.646
,
(3.091676) (5)√

13.12

]
= [2.42468, 4.26773]

= [2.425, 4.268]
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(e) For both designs Ȳ1 − Ȳ2 is a point estimator of the mean difference µ1 − µ2.

For two independent samples the variance of this estimator is

V ar
(
Ȳ1 − Ȳ2

)
=
σ2

1

n1
+
σ2

2

n2

and for the paired experiment the variance of the estimator is

V ar
(
Ȳ1 − Ȳ2

)
=
σ2

1

n1
+
σ2

2

n2
− 2Cov (Y1i, Y2i)

A sample of dependent pairs (Y1i, Y2i) is better than two independent random samples
for estimating µ1−µ2 since the difference µ1−µ2, can be estimated more accurately (smaller
variance and shorter confidence intervals) if Cov (Y1i, Y2i) > 0.

In this example, an analysis of the differences allows for a more precise comparison
since differences between the 26 subjects have been eliminated, that is, by analyzing the
differences we do not need to worry that there may have been large differences in blood
pressure between the 26 subjects due to other variates such as sex, age, smoker/non-smoker,
etc.

(f) Since this is a experimental study in which the researcher controlled where the blood
pressure measurement was taken and randomized the order of the place (doctor’s offi ce or
at home), we are able to conclude that a statistically significant difference in mean blood
pressure is due to where the measurement was taken.

5. (a) [8]

The least squares estimate of β is 5.191 .

The maximum likelihood estimate of α is 47.185 .

The equation of the fitted least squares line is y = 47.185 + 5.191x .

An estimate of the mean increase in final grade for a unit increase in clicker grade is
5.191 .

An estimate of the standard deviation of the maximum likelihood estimator β̃ is 0.817 .

The value of the test statistic for testing H0 : β = 0 is equal to 6.353 .

The p− value for testing H0 : β = 0 is equal to 1.2e− 08 or 1.202e− 08 .

State your conclusion with justification regarding the hypothesis H0 : β = 0 in a sentence.

Since p− value ≈ 0 there is very strong evidence against the hypothesis H0 : β = 0 based
on these data.
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(b)
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(c) The scatterplot in Panel A with the fitted line, the standardized residual plot in Panel
B and the qqplot of the standardized residuals in Panel D are all relevant for drawing
conclusions about the validity of the assumed regression model.

Panel C is not relevant for drawing conclusions about the validity of the assumed
regression model.

(1) In Panel A we are looking to see if the observed points lie reasonably along the fitted
lie which they do. Note that there is quite a bit of variability about the line.

(2) In Panel B we are looking to see if the points lie in roughly a horizontal band about
the line r̂∗ = 0 which they do. No systematic patterns are observed.

(3) In Panel D we are looking to see if the points lie reasonably along a straight line
which they do.

Based on these plots the model assumptions seem reasonable.
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(d) This is an observational study and not an experimental study. The instructor is not in
control of the clicker marks (the explanatory variate) and therefore a causal relationship
cannot be concluded. In particular the instructor cannot conclude that a higher clicker grade
results in a higher final grade. An alternative explanation is that a student’s intelligence
or their study habits cause both the higher clicker grade and the higher final grade.

(e) Based on this output and the previous R output given, determine a 95% prediction
interval for the final grade for a student who has a clicker mark of 4.2. Show your work.

From the t table P (T ≤ 1.9901) = 1+0.95
2 = 0.975 where T ∼ t (80).

The 95% prediction interval is

47.185 + 5.191 (4.2)± 1.9901 (12.0447)

√
1 +

1

82
+

(4.2− 3.75405)2

217.3591
68.9872± 24.1268

= [44.860, 93.114]

6.

Diffi cult / Generation Millennial Gen’X Baby Boomers Total

Agree
Disagree

182

[194.4]

270

[252]

268

[273.6]

88

[75.6]

80

[98]

112

[106.4]

720

280

Total 270 350 380 1000

(a) This is an observational study since no variates were manipulated by the researchers.

(b) One variate is age category (Baby Boomer, Gen X’er or Millennial) which is a categorical
variate.

The other variate is whether the person agrees or disagrees with the statement that
finding holiday gifts that people will like is diffi cult. This is also a categorical variate.

(c) The expected frequencies under the hypothesis of independence are given in the table
in square brackets.

e11 =
720× 270

1000
= 194.4, e12 =

720× 350

1000
= 252

and the remaining frequencies can be determined by subtraction.
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The observed value of the likelihood ratio statistic is

λ = 2[182 log

(
182

194.4

)
+ 270 log

(
270

252

)
+ 268 log

(
268

273.6

)
+88 log

(
88

75.6

)
+ 80 log

(
80

98

)
+ 112 log

(
112

106.4

)
]

= 7.930

p− value ≈ P (W ≥ 7.930) where W ∼ χ2 (2)

= e−7.930/2 = 0.019

Since p−value ≈ 0.019 there is evidence against the hypothesis of no relationship based
on the data.

(d) A suitable target population is Canadian adults 18 and over.

The study population is Canadian adults 18 and over with a telephone since only a
telephone survey was conducted.

(e) Study error arises when the attributes in the study population differ from the attributes
in the target population. In this study a possible source of study error is that only adults
with telephones were in the study population. For example suppose only adults with land
line telephones were contacted. People with land lines may be systematically different with
respect to how diffi cult they think finding holiday gifts is.

(f) A point estimate of θ is

θ̂ =
720

1000
= 0.72

An approximate 95% confidence interval is

0.72± 1.96

√
(0.72) (0.28)

1000
= 0.72± 0.027829

= [0.692, 0.748]
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Summary of Discrete Distributions

Notation and

Parameters

Probability

Function

fy

Mean

EY

Variance

VarY

Moment

Generating

Function

Mt

Discrete Uniforma,b

b ≥ a
a,b integers

1
b−a1

y  a,a  1,… ,b

ab
2

b−a12−1
12

1
b−a1 ∑

xa

b

etx

t ∈ 

HypergeometricN, r,n

N  1,2,…

n  0,1,… ,N

r  0,1,… ,N

r
y

N−r
n−y

N
n 

y  max 0,n − N  r,

… ,minr,n

nr
N

nr
N 1 −

r
N 

N−n
N−1 Not tractable

Binomialn,p

0 ≤ p ≤ 1, q  1 − p
n  1,2,…

n
y pyqn−y

y  0,1,… ,n
np npq pet  qn

t ∈ 

Bernoullip

0 ≤ p ≤ 1, q  1 − p
pyq1−y

y  0,1
p pq pet  q

t ∈ 

Negative Binomialk,p

0  p ≤ 1, q  1 − p
k  1,2,…

yk−1
y pkqy

 −k
y pk−qy

y  0,1,…

kq
p

kq

p2

p

1−qet
k

t  − lnq

Geometricp

0  p ≤ 1, q  1 − p

pqy

y  0,1,…

q
p

q

p2

p

1−qet

t  − lnq

Poisson

 ≥ 0

e−y

y!

y  0,1,…
  ee

t−1

t ∈ 

Multinomialn;p1,p2,… ,pk

0 ≤ pi ≤ 1
i  1,2,… ,k

and∑
i1

k

pi  1

fy1,y2,… ,yk 
n!

y1!y2!yk!
p1
y1p2

y2pk
yk

yi  0,1,… ,n

i  1,2,… ,k

and∑
i1

k

yi  n

EYi  npi
i  1,2,… ,k

VarYi

 npi1 − pi

i  1,2,… ,k

Mt1, t2,… , tk

p1e
t1p2e

t2

pk−1e
tk−1pk

n

ti ∈ 
i  1,2,… ,k − 1



Summary of Continuous Distributions

Notation and

Parameters

Probability

Density

Function

fy

Mean

EY

Variance

VarY

Moment

Generating

Function

Mt

Uniforma,b

b  a

1
b−a

a ≤ y ≤ b

ab
2

b−a2

12

ebt−eat
b−at t ≠ 0

1 t  0

Exponential

  0

1
 e
−y/

y ≥ 0
 2

1
1−t

t  1


N,2  G,

 ∈ , 2  0

1
2 

e−y−
2/22

y ∈ 
 2 et

2t2/2

t ∈ 

2k

k  1,2,…

yk/2−1e−y/2

2k/2Γk/2

y  0

Γa  
0



xa−1e−xdx

k 2k 1 − 2t−k/2

t  1
2

tk

k  1,2,…

ck

1 y
2

k
k1/2

y ∈ 

ck 
Γ k1

2

k Γ k
2

0 if k  2,3,…

DNE if k  1

k
k−2 if k  3,4,…

DNE if k  1,2
DNE



                                                    
         This table gives values of F(x) = P(X ≤ x) for X ~ N(0,1) and x ≥ 0 

 

x  0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09 

0.0  0.50000  0.50399  0.50798  0.51197  0.51595  0.51994  0.52392  0.52790  0.53188  0.53586 

0.1  0.53983  0.54380  0.54776  0.55172  0.55567  0.55962  0.56356  0.56749  0.57142  0.57535 

0.2  0.57926  0.58317  0.58706  0.59095  0.59483  0.59871  0.60257  0.60642  0.61026  0.61409 

0.3  0.61791  0.62172  0.62552  0.62930  0.63307  0.63683  0.64058  0.64431  0.64803  0.65173 

0.4  0.65542  0.65910  0.66276  0.66640  0.67003  0.67364  0.67724  0.68082  0.68439  0.68793 

0.5  0.69146  0.69497  0.69847  0.70194  0.70540  0.70884  0.71226  0.71566  0.71904  0.72240 

0.6  0.72575  0.72907  0.73237  0.73565  0.73891  0.74215  0.74537  0.74857  0.75175  0.75490 

0.7  0.75804  0.76115  0.76424  0.76730  0.77035  0.77337  0.77637  0.77935  0.78230  0.78524 

0.8  0.78814  0.79103  0.79389  0.79673  0.79955  0.80234  0.80511  0.80785  0.81057  0.81327 

0.9  0.81594  0.81859  0.82121  0.82381  0.82639  0.82894  0.83147  0.83398  0.83646  0.83891 

1.0  0.84134  0.84375  0.84614  0.84849  0.85083  0.85314  0.85543  0.85769  0.85993  0.86214 

1.1  0.86433  0.86650  0.86864  0.87076  0.87286  0.87493  0.87698  0.87900  0.88100  0.88298 

1.2  0.88493  0.88686  0.88877  0.89065  0.89251  0.89435  0.89617  0.89796  0.89973  0.90147 

1.3  0.90320  0.90490  0.90658  0.90824  0.90988  0.91149  0.91309  0.91466  0.91621  0.91774 

1.4  0.91924  0.92073  0.92220  0.92364  0.92507  0.92647  0.92785  0.92922  0.93056  0.93189 

1.5  0.93319  0.93448  0.93574  0.93699  0.93822  0.93943  0.94062  0.94179  0.94295  0.94408 

1.6  0.94520  0.94630  0.94738  0.94845  0.94950  0.95053  0.95154  0.95254  0.95352  0.95449 

1.7  0.95543  0.95637  0.95728  0.95818  0.95907  0.95994  0.96080  0.96164  0.96246  0.96327 

1.8  0.96407  0.96485  0.96562  0.96638  0.96712  0.96784  0.96856  0.96926  0.96995  0.97062 

1.9  0.97128  0.97193  0.97257  0.97320  0.97381  0.97441  0.97500  0.97558  0.97615  0.97670 

2.0  0.97725  0.97778  0.97831  0.97882  0.97932  0.97982  0.98030  0.98077  0.98124  0.98169 

2.1  0.98214  0.98257  0.98300  0.98341  0.98382  0.98422  0.98461  0.98500  0.98537  0.98574 

2.2  0.98610  0.98645  0.98679  0.98713  0.98745  0.98778  0.98809  0.98840  0.98870  0.98899 

2.3  0.98928  0.98956  0.98983  0.99010  0.99036  0.99061  0.99086  0.99111  0.99134  0.99158 

2.4  0.99180  0.99202  0.99224  0.99245  0.99266  0.99286  0.99305  0.99324  0.99343  0.99361 

2.5  0.99379  0.99396  0.99413  0.99430  0.99446  0.99461  0.99477  0.99492  0.99506  0.99520 

2.6  0.99534  0.99547  0.99560  0.99573  0.99585  0.99598  0.99609  0.99621  0.99632  0.99643 

2.7  0.99653  0.99664  0.99674  0.99683  0.99693  0.99702  0.99711  0.99720  0.99728  0.99736 

2.8  0.99744  0.99752  0.99760  0.99767  0.99774  0.99781  0.99788  0.99795  0.99801  0.99807 

2.9  0.99813  0.99819  0.99825  0.99831  0.99836  0.99841  0.99846  0.99851  0.99856  0.99861 

3.0  0.99865  0.99869  0.99874  0.99878  0.99882  0.99886  0.99889  0.99893  0.99896  0.99900 

3.1  0.99903  0.99906  0.99910  0.99913  0.99916  0.99918  0.99921  0.99924  0.99926  0.99929 

3.2  0.99931  0.99934  0.99936  0.99938  0.99940  0.99942  0.99944  0.99946  0.99948  0.99950 

3.3  0.99952  0.99953  0.99955  0.99957  0.99958  0.99960  0.99961  0.99962  0.99964  0.99965 

3.4  0.99966  0.99968  0.99969  0.99970  0.99971  0.99972  0.99973  0.99974  0.99975  0.99976 

3.5  0.99977  0.99978  0.99978  0.99979  0.99980  0.99981  0.99981  0.99982  0.99983  0.99983 
 
 

   N(0,1) Quantiles:     This table gives values of F-1(p) for p ≥ 0.5 
  

p  0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.075  0.08  0.09  0.095 

0.5  0.0000  0.0251  0.0502  0.0753  0.1004  0.1257  0.1510  0.1764  0.1891  0.2019  0.2275  0.2404 

0.6  0.2533  0.2793  0.3055  0.3319  0.3585  0.3853  0.4125  0.4399  0.4538  0.4677  0.4959  0.5101 

0.7  0.5244  0.5534  0.5828  0.6128  0.6433  0.6745  0.7063  0.7388  0.7554  0.7722  0.8064  0.8239 

0.8  0.8416  0.8779  0.9154  0.9542  0.9945  1.0364  1.0803  1.1264  1.1503  1.1750  1.2265  1.2536 

0.9  1.2816  1.3408  1.4051  1.4758  1.5548  1.6449  1.7507  1.8808  1.9600  2.0537  2.3263  2.5758 

 

N(0,1) Cumulative 
Distribution Function  



Chi‐Squared Quantiles

This table gives values of x for p = P(X ≤ x) =  F(x)

df\p 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995

1 0.000 0.000 0.001 0.004 0.016 2.706 3.842 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.146 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.054 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.391 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.430 104.210

80 51.172 53.540 57.153 60.391 64.278 96.578 101.880 106.630 112.330 116.320

90 59.196 61.754 65.647 69.126 73.291 107.570 113.150 118.140 124.120 128.300

100 67.328 70.065 74.222 77.929 82.358 118.500 124.340 129.560 135.810 140.170

 



Student t Quantiles

This table gives values of x  for p  = P(X  ≤ x ) =  F (x ), for p ≥ 0.6

df \ p 0.6 0.7 0.8 0.9 0.95 0.975 0.99 0.995 0.999 0.9995

1 0.3249 0.7265 1.3764 3.0777 6.3138 12.7062 31.8205 63.6567 318.3088 636.6192

2 0.2887 0.6172 1.0607 1.8856 2.9200 4.3027 6.9646 9.9248 22.3271 31.5991

3 0.2767 0.5844 0.9785 1.6377 2.3534 3.1824 4.5407 5.8409 10.2145 12.9240

4 0.2707 0.5686 0.9410 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732 8.6103

5 0.2672 0.5594 0.9195 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934 6.8688

6 0.2648 0.5534 0.9057 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588

7 0.2632 0.5491 0.8960 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079

8 0.2619 0.5459 0.8889 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413

9 0.2610 0.5435 0.8834 1.3830 1.8331 2.2622 2.8214 3.2498 4.2968 4.7809

10 0.2602 0.5415 0.8791 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869

11 0.2596 0.5399 0.8755 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370

12 0.2590 0.5386 0.8726 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178

13 0.2586 0.5375 0.8702 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208

14 0.2582 0.5366 0.8681 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405

15 0.2579 0.5357 0.8662 1.3406 1.7531 2.1314 2.6025 2.9467 3.7328 4.0728

16 0.2576 0.5350 0.8647 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150

17 0.2573 0.5344 0.8633 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9651

18 0.2571 0.5338 0.8620 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9216

19 0.2569 0.5333 0.8610 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834

20 0.2567 0.5329 0.8600 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8495

21 0.2566 0.5325 0.8591 1.3232 1.7207 2.0796 2.5176 2.8314 3.5272 3.8193

22 0.2564 0.5321 0.8583 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7921

23 0.2563 0.5317 0.8575 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7676

24 0.2562 0.5314 0.8569 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668 3.7454

25 0.2561 0.5312 0.8562 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7251

26 0.2560 0.5309 0.8557 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066

27 0.2559 0.5306 0.8551 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896

28 0.2558 0.5304 0.8546 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739

29 0.2557 0.5302 0.8542 1.3114 1.6991 2.0452 2.4620 2.7564 3.3962 3.6594

30 0.2556 0.5300 0.8538 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460

40 0.2550 0.5286 0.8507 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510

50 0.2547 0.5278 0.8489 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960

60 0.2545 0.5272 0.8477 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602

70 0.2543 0.5268 0.8468 1.2938 1.6669 1.9944 2.3808 2.6479 3.2108 3.4350

80 0.2542 0.5265 0.8461 1.2922 1.6641 1.9901 2.3739 2.6387 3.1953 3.4163

90 0.2541 0.5263 0.8456 1.2910 1.6620 1.9867 2.3685 2.6316 3.1833 3.4019

100 0.2540 0.5261 0.8452 1.2901 1.6602 1.9840 2.3642 2.6259 3.1737 3.3905

>100 0.2535 0.5247 0.8423 1.2832 1.6479 1.9647 2.3338 2.5857 3.1066 3.3101
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